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Uncertainties in concentrations estimated from 
calibration experiments 
 
Analytical chemists routinely use calibration data to 
evaluate the results of instrumental analysis. We subject a 
series of effectively matrix-matched standard materials of 
known concentrations to the same protocol as that used for 
test materials. We estimate the concentrations of analyte in 
the latter by interpolation, either graphically or by 
regression. But we can get important further information 
from the same data: the standard deviations and confidence 
limits of the estimated concentrations, and the conditions 
under which their uncertainties can be minimised. Often 
these uncertainties are disturbingly large. When the 
calibration graph is linear, straightforward equations are 
available to achieve these outcomes. 
 
The line of regression of y on x 
In most calibration experiments we make the assumption that the 
uncertainties in the concentrations (x) of the standards are 
negligible compared with those of the output signals (y) of the 
analytical instrument. The graph thus plotted is the line of 
regression of y on x, that is, the line  which 
minimises, using the least squares criterion, the y-direction 
residuals in the calibration. From the slope and intercept of the 
graph, we use the instrument signal for an unknown test sample, 
y

bxay +=ˆ

0, to give the corresponding concentration, from x0 = (y0 – a)/b. 
It turns out that finding s0 (the standard deviation of the 
unknown concentration x0) is not a completely simple statistical 
problem because, in analytical work, we use the line of 
regression of y on x in an unusual way. 
 
‘Inverse regression’ 
We can illustrate this using a non-chemical example. If we 
determine the weights of a number of infants of known ages and 
plot them on a graph (for simplicity, we assume it to be linear) 
then, to use the line of regression of y on x, it will clearly be 
right to plot the weights as y and the ages as x. Different children 
of the same age do not all weigh the same, and there will be 
measurement errors too, whereas the infants’ ages will be known 
exactly. The normal use of such a graph would be to estimate by 
interpolation the average weight of a child of a given age, i.e. we 
would find a y-value from an x-value. Such an estimate would 
naturally have an associated uncertainty, as the slope and 
intercept of the graph would be uncertain because of the scatter 
of the points. (The standard deviations of the slope and intercept 
are readily given by programs such as Excel®).  
 
In analytical work, however, we use the same type of graph to 
estimate x0 from y0, the opposite process sometimes known as 
inverse regression. (This would be equivalent of estimating an 
infant’s age from its weight.) So the estimate of s0 is 
complicated by the fact that, in addition to the uncertainty in the 
position of the calibration line itself, the measured value of y0 is 

also subject to uncertainty, so the value of s0 must somehow 
reflect both these contributions (Figure 1).   

 
Figure 1. The confidence regions (shaded) in signal y0 and the regression 
(calibration) line interact to give unexpectedly wide ‘inverse confidence 
limits’ (double arrow) for concentration x0. 
 
‘Inverse confidence limits’ 
Because this interaction of error contributions is rather complex, 
we tend to use a simplified version of the necessary equations. If 
we use an un-weighted calibration approach (in which the y-
direction random error is assumed to be the same for all x 
values, so that all the points on the graph have the same weight, 
or importance) then the equation for s0 is: 
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In (1) the n calibrating points on the graph have means x   
and ,y the test material is measured m times giving a mean 
response value y0, b is the slope of the graph, and sy/x is given 
by: 
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where the values are the fitted y-values, that is, the points on 
the calibration line at the standard values of x

iŷ
i.  Excel® calls sy/x 

the “standard error” of the line. Confidence limits for x0 are 
obtained from x0 ± ts0, the value t-value being taken at the 
required probability level and (n – 2) degrees of freedom. These 
confidence limits have been called inverse confidence limits 
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(reflecting the use of inverse regression) or fiducial limits 
(Draper and Smith, 1998).  
 
The approximation inherent in equation (1) is valid if: 
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The t-statistic is used as above. In analytical calibrations, 
equation (3) is almost always valid: unless the data are very poor 
the function often has a value of <0.01. 
 
Example 
We can apply these equations to a simple and typical example of 
a good-quality calibration graph: 
 
y     0.099     0.187     0.274     0.347     0.426     0.489 
x         0            5           10         15          20          25 
 
The data and regression line are shown in Figure 2. It is easy to 
show that in this case b = 0.0157, sy/x  = 0.00894, and 

( 2∑ − xxi ) = 437.5. The 2-tailed t-value for p = 0.05 and 4 
degrees of freedom is 2.78, so the function in equation (3) has 
the value 0.0057. Equation (1) can thus be applied with 
confidence. If we further assume that y0 is measured once only 
with a value of 0.400, corresponding to an x0 value of 18.6, we 
also find that sy/x/b = 0.569, and that the three terms inside the 
brackets in (1) are respectively 1, 1/6, and 0.0855. The value of 
s0 is thus 0.569 × √1.252 = 0.637. The 95% confidence limits for 
x0 are thus 18.6 ± 1.8 (Figure 2). This example is typical of good 
calibration graphs with modest values of n: in such cases the 
confidence interval is a good deal wider than we might naively 
expect, and if the value of x0 is close to the limit of detection of 
the method the interval might conceivably include zero. 

 
Figure 2  Confidence interval on a concentration estimated from a 
response of 0.4 from the example data. 
 
Minimising s0 and the confidence interval of x0 
By studying equation (1) we can deduce the conditions in which 
s0 can be minimised, presumably a major aim of a calibration-
based method. Unsurprisingly this standard deviation is small 
when b is substantial (that is, the line is “well determined”) and 
when sy/x is small, which we see when the calibration points lie 
close to the regression line. In most cases if m = 1 this is the 
largest term of the three inside the brackets of equation (1), so a 
major reduction in s0 is achieved simply by making multiple 
measurements of y0. For example if m = 4 in our example, the 
value of s0 falls from 0.637 to 0.403. If the number of 

measurements, (m + n), is limited by considerations of time, 
costs, etc, then (1/m + 1/n) is minimised by making m = n. 
However this may not produce the best (narrowest) confidence 
limits for x0, as the value of t rises sharply as n falls. Thus it is 
often recommended that n is at least 6. Finally it is clear that the 
third term inside the brackets of (3) is minimised if  yy ≈0 , 
that is, we obtain the smallest uncertainty near the centroid of 
the calibration graph. In such cases the third term may well be 
the smallest term in (1), but in our example, if y0 is 0.1, then the 
third term becomes 0.3859, substantially higher than 1/n. In 
principle it is feasible to reduce the third term further, 

maximising ( )2∑ − xxi  by having two clusters of calibration 
points at high and low values of x. However this discards much 
information on the characteristics of the calibration, and is 
discouraged. 
 
Standard additions 
When a calibration experiment is carried out using the method of 
standard additions to minimise some matrix effects, the value of 
x0 is effectively determined by extrapolating the line to the value 
y0 = 0. Equation (1) must then be modified to give: 
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Available software 
A Minitab® macro for calculating inverse regression confidence 
intervals is available through the Resources section of the 
program’s Web site: www.Minitab.com. Since Excel® provides 
sy/x and b values automatically in its regression function, 
calculations of s0 etc using this spreadsheet are also relatively 
simple. 
 
Further reading 
• N.R. Draper and H. Smith, Applied Regression Analysis, 3rd 

edn., Wiley-Interscience, New York, 1998. 
• D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De 

Jong, P.J. Lewi and J. Smeyers-Verbeke, Handbook of 
Chemometrics and Qualimetrics, Part A, Elsevier, 
Amsterdam, 1997. 
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