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Abstract

Measurement uncertainty is a statistical parameter which describes the possible fluctuations of the result of a measurement. It is not a mere
repeatability but it is at least as high as the intra-laboratory reproducibility. If it is an attribute of a general analytical test procedure it is at least
as high as the inter-laboratory reproducibility. Measurement uncertainty can be determined by the addition of the variances of the individual steps
of the test procedure or by an approach which starts with one of the above-mentioned reproducibilities. Any measurement uncertainty should be
kept low but it is objectionable to state too low a value, e.g. by falsely reporting mere repeatability data instead of properly determined uncertainty
data. Some good working principles can help to obtain low measurement uncertainties.
© 2007 Elsevier B.V. All rights reserved.
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. Introduction

Measurement results must be obtained under well-defined
onditions. Valid results, used as a base for decisions, trade,
egal actions or publications, must not be a stroke of luck but they
hould get their authenticity by a carefully determined figure of
erit. The characteristic needed for all kinds of measurements

s the so-called measurement uncertainty. Its necessity was real-
zed earlier in physics than in chemistry, therefore an important
ocument, the so-called “GUM”, was published in 1993 (cor-
ected and reprinted in 1995) with a number of detailed examples
aken from physical measurement problems [1]. In paragraph
.2.3 it defines the term “measurement uncertainty” as follows:

“Parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reason-
ably be attributed to the measurand.”

Based on the principles described in the GUM, a similar doc-
ment for analytical chemistry came out in 1995, called the
QUAM”; the now valid second edition is from 2000 [2]. It can
e downloaded from the Internet free of charge and all persons in
he company which are involved in quality management should
ave a personal copy. In addition, the “GUM” should at least be
ound in the library because it gives more mathematical back-
round and is the relevant document in difficult or questionable
ases.

The measurement uncertainty datum is the spouse of a result
ecause no industrial, commercial or governmental laboratory
ill produce results just for the fun of it. A result will be judged
r compared with others and will lead to a decision, e.g. pass
ersus fail, accept versus reject, implement an action or not. Two
ossible scenarios are shown in Fig. 1. One of them illustrates
he situation with a legal limit of the concentration of a pesti-
ide in food. In order to protect the consumers the commodity
ust be rejected even if the mean analytical result is below the

imit in a case where the sum of result and uncertainty is higher
han the limit. The other illustration shows the comparability
f results found by different laboratories (such as producer and
ustomer, pharmaceutical industry and drug control etc.). The
wo parties involved will not have an argument if their results
lus uncertainties have some overlap.

The norm ISO 17025, “General requirements for the com-
etence of testing and calibration laboratories”, demands the
etermination of the measurement uncertainty of analytical
esults in paragraph 5.4.6 [3].

. Top-down and bottom-up approach for the
etermination of the measurement uncertainty

It is well known that repeatability, described as a standard
eviation, a relative standard deviation or a coefficient of varia-
ion, covers only a limited part of the possible fluctuation of an
nalytical result. Moreover, one will not get the same standard

eviation if the same sample solution is injected consecutively
everal times into the chromatograph or if the whole sample
reparation is repeated several times, resulting in n different
ample solutions (n being at least 3 but preferably higher). The

t
t
w
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atter standard deviation will be higher because now also all
he little fluctuations of weighing, dilution, recovery etc. will
dd to the standard deviation of the chromatographic instrument
nd process. The highest intra-laboratory repeatability, the so-
alled intermediate precision [4], is obtained by repeating the
nalysis on different days, with different instrumentation and so
n. The standard deviation is even higher if several laborato-
ies at different locations are involved; this value is called the
inter-laboratory) reproducibility, see Fig. 2. It is high because
he different instruments involved (not only chromatographs
ut also pipets, etc.) differ in their calibration and repeatability
nd because the different people have their individual working
tyle. The reproducibility can be identical with the measurement
ncertainty of the test procedure if the purity of the reference
ompound is not an important parameter of the uncertainty bud-
et (see paragraph 4.3 below). This approach which obtains
measurement uncertainty from reproducibility is called the

op-down method.
The opposite is the bottom-up approach, calculating the

ncertainty by the addition of variances:

c(M) = M

√(
u(a)

a

)2

+
(

u(b)

b

)2

+
(

u(c)

c

)2

+
(

u(d)

d

)2

(1)

or a measurand M (i.e. an analytical result) if the equation for
he calculation of M is based only on multiplications and divi-
ions such as M = (a × b × c)/d (see paragraph 3.5 below). u(x)
s the standard uncertainty of factor x and uc(M) is the combined
ncertainty.

The bottom-up approach can be tedious if the calculations are
one with a pocket calculator. On the other hand, it is illustrative
nd forces the analyst to understand the details of the test pro-
edure in question. Therefore, the bottom-up approach is a tool
hich identifies the parameters or working steps with an overly

ontribution to the total uncertainty, thus offering the chance to
mprove them.

. Some tools for the determination of measurement
ncertainty

.1. Flow diagram and Ishikawa diagram

For the correct determination of measurement uncertainty,
nd especially for the bottom-up approach, it is essential that
he analyst understands the analytical test procedure. It should
e described in detail in a standard operating procedure (SOP).
f this was done correctly it is not difficult to draw a flow dia-
ram of the individual working steps of the method. (If this task
s difficult the SOP is not complete or not clear, resulting in frus-
rated personnel.) Drawing flow diagrams is not mandatory but
ery helpful. Fig. 3 shows the diagram of a simple analysis with
ne-point calibration.
An Ishikawa diagram or cause-and-effect diagram (some-
imes also termed fishbone diagram) is a useful tool to identify
he influence parameters, i.e. the sources of uncertainty, of a
hole test procedure or of a single working step [5–7]. By
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Fig. 1. A result without measurement uncertainty can lead to problems. Left: results A and B are below the maximum allowed pesticide concentration even when their
measurement uncertainty is taken into consideration. The mean of result C is below the limit but there is a certain possibility that the maximum allowed concentration
is transgressed because of its uncertainty; the food sample will be rejected. Result D has the same consequence although there is some possibility that the limit is not
transgressed. Right: A certain sample is analysed by three different laboratories. A and B will accept the results of each other, and so will do laboratories B and C.
However, laboratories A and C will run into an argument.

Fig. 2. The six-fold injection of the same sample (a) will yield a lower repeatability (measured as standard deviation) than the six-fold preparation of the same
sample (b). If the six preparations are performed on different days (c) the standard deviation will be even higher and the number is called “intermediate precision”
(or “day-to-day precision” in this case). If the same sample is investigated in different laboratories (d) the resulting standard deviation is highest and is called
“reproducibility”.
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Fig. 3. The flow diagram of a simple chromatographic analysis.
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Fig. 4. The Ishikawa diagram with the uncertainty sources of the
A 1158 (2007) 15–24

rawing such a structure one can identify, sort and discuss these
arameters. Arrows of first, second and if necessary also higher
rder point from causes (e.g. the operating repeatability of a
ipet) to effects (e.g. a volume or, finally, to the analytical result).
ig. 4 is the Ishikawa diagram of the process shown in Fig. 3.

.2. Equation of the measurand

The measurand, i.e. the equation for the calculation of the
nalytical result, must be noted in detail. Usually a calculation
s not done with the operation (peak area of sample/peak area of
eference) × (concentration of reference solution). The equation
or the analysis shown in Fig. 3 is as follows:

S = VPipR × cR × PR × VFlaskS × AS

VFlaskR × mS × AR

(2)

ith c = concentration, VPip = volume of a pipet, VFlask = volume
f a measuring flask, P = purity, A = peak area, m = mass; the
ndex S refers to the sample and the index R to the reference.

The detailed equation of the measurand must be noted in the
OP. In fact, it is the starting point of the Ishikawa diagram.
lthough such a diagram can be drawn by free association it

hould afterwards be compared with the equation. Every fac-
or of the equation must appear in the diagram. (The Ishikawa
iagram may show more arrows than factors.)

.3. Standard deviations

Preliminary remark: the standard uncertainties u(x) in Eq.
1) can be standard deviations but they can also be of another
ype of distribution. Standard deviations are determined by the
-fold repeat of a measurement; they are a characteristic of nor-
ally (Gaussian) distributed data, the typical feature of results
hich show some accidental fluctuations when the experiment

s repeated. If the standard uncertainties cannot be obtained by
xperiments they are assigned another type of distribution, see

aragraph 3.4 below.

By the repeated determination of an influence parameter of
easurement uncertainty one gets its standard deviation s(x)
hich describes the scatter of the results: approx. 68% will lie

measurement uncertainty of the analysis shown in Fig. 3.
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etween x ± 1s and 95% between x ± 2s if the number of mea-
urements n is large (whereby “large” is not defined, personally
propose to set n ≥ 10 for a rather reliable standard deviation).

(x) =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2 (3)

A cognate number of merit is the standard deviation of the
ean s(x̄), obtained by dividing s(x) by

√
n:

(x̄) = s(x)√
n

=
√√√√ 1

n(n − 1)

n∑
i=1

(xi − x̄)2 (4)

(x̄) is a smaller number than s(x), therefore one can be tempted
o use it for the calculation of the measurement uncertainty of
epeated measurements. However, s(x̄) must only be used if a
ertain well-defined object or a certain well-defined and finished
rocess is described. As an example, if a single coin is weighed
times we will ascribe the standard deviation of the mean s(m̄)

o the mean mass m̄. On the other hand, if a recovery is deter-
ined n times in order to know its expected mean value for the

ext analysis or for many future analyses we must use the stan-
ard deviation of the recovery s(Rec) according to Eq. (3). This
ssignment follows from the fact that the next analysis will pro-
ide its own (but unknown to us) recovery, which can be close
o the mean or in a region, which is as far apart from the mean
s 2s. Similarly, any parameter characterized with a repeatabil-
ty will contribute its standard deviation s(x) to the uncertainty
alculation, i.e. a u(x) of Eq. (1) will be an s(x) in these cases.

Fig. 5a shows the bell-shaped function of the normal distri-
ution with the areas covered by ± 1s and ± 2s.

.4. Other standard uncertainties

In many cases it is not possible or it would be too time-

onsuming to determine the variability of an uncertainty source
y repeated experiments. Therefore, its standard uncertainty is
ot a standard deviation but is characterized by another type
f distribution. Although distributions can have many different

a
p
r

ig. 5. Distribution functions. (a) Normal distribution with standard uncertainty u(
ectangular distribution with standard uncertainty u(x) = 0.6a. The shaded area of
ncertainty u(x) = 0.4a. The shaded area of x̄ ± u(x) covers 65% of the data.
A 1158 (2007) 15–24 19

hapes, including asymmetric ones, the QUAM uses only two of
hem, namely the rectangular and the triangular distribution. In
ontrast to the normal distribution with “open ends” they cover
limited span of data and have clear boundaries.

A rectangular distribution (Fig. 5b) is chosen if no detailed
nowledge of the function is available. A typical and impor-
ant example is the temperature in a laboratory without
ir-conditioning over a certain time-span, e.g. a day or a year.
he known or assumed temperature extremes, e.g. 18–25 ◦C, are

he boundaries of the distribution. Its width is 2a (which means
◦C in the example given above), its standard uncertainty u(x) is
/
√

3 or 0.6a (giving 0.6 × 3.5 ◦C = 2.1 ◦C). The span of x̄ ± u(x)
overs 58% of the data.

The triangular distribution (Fig. 5c) is chosen if there is a
igher probability for the data to lie in the middle of the interval
f 2a than at the boundaries. Such a distribution can be assumed
or the volume of a measuring flask. The manufacturing pro-
ess is optimized in such a way that the desired volume of, e.g.
50.0 mL is hit more often than one of 249.9 mL or 250.1 mL.
he standard uncertainty of the triangular distribution u(x) is
/
√

6 or 0.4a, giving u(V) = 0.4 × 0.1 mL = 0.04 mL. The span
f x̄ ± u(x) covers 65% of the data.

.5. Calculation rules

The standard uncertainties u(xi) of the individual uncertainty
ources xi are added to the combined uncertainty uc(M) of the
easurand. The general rule is as follows: set up the equation of

he measurand M. Determine the partial differentials of M with
espect to all xi, square them, multiply them with the respective
2(xi), add all the summands, and extract the root:

c(M) =
√√√√ n∑

i=1

(
∂M

∂xi

)2

u2(xi) (5)
If the equation of M is not simple, e.g. if it includes summands
nd multiplicands (such as M = (a + b)/(c − d) or the like), the
artial differentials can have a complicated structure and the
esult uc(M) is even more intricate. However, for many relevant

x) = standard deviation s(x). The area of x̄ ± s(x) covers 68% of the data. (b)
x̄ ± u(x) covers 58% of the data. (c) Triangular distribution with standard
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quations the instruction of Eq. (5) leads to simpler expressions.
f the equation for M consists only of multiplicands and divisors,
uch as M = (a × b)/(c × d), Eq. (5) simplifies to:

uc(M)

M
=

√√√√ n∑
i=1

(
u(xi)

xi

)2

(6a)

hich is identical with:

c(M) = M

√√√√ n∑
i=1

(
u(xi)

xi

)2

(6b)

Eq. (6a) gives the relative uncertainty (the percentage rela-
ive uncertainty is obtained by multiplication with 100) and Eq.
6b) gives the absolute uncertainty with the same unit as the
easurand itself, e.g. mg/kg.
This type of equation is very common in analytical chemistry.

nother simple class of equations, less frequently seen, are those
ith only summands (positive or negative ones). They occur, e.g.

n the calculation of molecular weights or in the determination
f the loss on drying. A measurand of the type M = a + b − c
eads to:

c(M) =
√√√√ n∑

i=1

u2(xi) (7)

.6. Monte Carlo method

The calculation rules given above are typical for the bottom-
p approach (although some calculations may also be needed in
he top-down approach). These rules can lead to a complicated
nd tedious calculation of the combined measurement uncer-
ainty. An elegant way out is the determination of uc(M) by the

onte Carlo method [8]. It is based on the n-fold calculation of
with randomly generated values of the influence parameters.

hese numbers lie somewhere within their uncertainty bound-
ries around the specified value with a probability given by their
elevant distribution function. n must be very high, 10,000 cal-
ulations are a minimum. Therefore, a Monte Carlo simulation
ill not run on an old or cheap personal computer but it can be
erformed on a PC with reasonable configuration within some
inutes.
Monte Carlo has the advantage that the equation of the mea-

urand can be of any complexity. It is not necessary to determine
he partial differentials. In addition, multiple-point calibrations
r correlated influence parameters are no problem and the result-
ng combined standard uncertainty is correct in all cases.

.7. Expanded uncertainty

It was explained in paragraphs 3.3 and 3.4 that the stan-
ard uncertainties of the described distribution functions cover

range of 68%, 58% or 65% of the expected data. However,
hat is usually needed is a 95% level of confidence (only 5%
f the experiments will yield a result which is outside of this
ange). Therefore, a standard uncertainty needs to be expanded

w
γ

γ

s

A 1158 (2007) 15–24

ith its appropriate coverage factor k. The resulting expanded
ncertainty has the symbol U without index: U(M) = uc(M) × k.

The coverage factor of a normal distribution is 2 (strictly
peaking, it is 1.96 to cover 95.0%). For a rectangular distribu-
ion it is 1.65 and for a triangular distribution it is 1.93.

In the case of a combined standard uncertainty uc(M) the
xpansion can be somewhat more intricate. It depends on the
ype of distribution, which dominates the combined uncertainty,
.e. which parameter is largest in an equation such as Eq. (1). In

any cases this is the normal distribution; then the expansion is 2
f the number of experiments was high, namely 20 or higher. With
ewer experiments the coverage factor is defined by Student’s
-distribution [9]. With n = 3 it is necessary to multiply the ±1s
ncertainty with k = 4.3, with n = 4 the factor is still k = 3.2 and
rops only slowly to k = 2.3 with n = 10. It is obvious that a
mall number of experiments is “punished” with a large coverage
actor.

If a term with rectangular or triangular distribution function
s the dominating one the coverage factor is independent of the
umber of experiments and is 1.65 or 1.93, respectively.

If several terms with different distribution functions are of
imilar magnitude the central limit theorem states that the overall
istribution converges rapidly to a normal distribution [10]. For
etails see the GUM, paragraph H.2 [1].

. Some basic uncertainty sources

.1. Volumetric operations

The uncertainty of the volume of a measuring flask or a
ipet has three uncertainty sources, namely the calibration, the
epeatability, and the temperature influence. (Note: the QUAM
oes not list the possible ageing of a glass volumetric instru-
ent as an additional uncertainty source. To our experience it

an only occur if a strongly basic solution is stored in a burette
ver a long time period; even then, the effect is low and needs
o be taken into consideration on a metrological level only.)
he calibration uncertainty is subject to a triangular distribu-

ion because the manufacturer strives for the nominal volume.
t can be found on the instrument itself or in the data sheet. The
epeatability has a normal distribution (the standard deviation,
ot the standard deviation of the mean). If no data are available it
ust be determined experimentally. Note that published data are

alid for water only; the repeatability is poorer with organic sol-
ents, viscous solvents or water with detergent, and if untrained
ersonnel is doing the work. The temperature influence has a
ectangular (if no detailed temperature data are available) or a
riangular distribution (if the laboratory is air-conditioned).

Temperature fluctuations result in a volume fluctuation
ccording to:

(V ) = Vγu(T ) (8)
ith γ being the cubic coefficient of volume expansion;
= 2.1 × 10−4 K−1 for water (in the vicinity of 20 ◦C) and
≈ 1 × 10−3 K−1 for organic solvents. The coefficient of expan-

ion of glass instruments is smaller, therefore it is not of
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mportance. On the other hand, plastics used for flasks or pipets
polypropylene or polymethylpentene) have a coefficient similar
o liquids, which leads to the consequence that the temperature
erm is negligible if such instruments are used.

In glass flasks and glass pipets the calibration and repeatabil-
ty terms are combined to the so-called “maximum permissible
rror”. This is the number engraved or printed on such instru-
ents close to the nominal volume, e.g. 10 mL ± 0.025 mL. It

s only valid for aqueous solutions and is probably larger for
rganic solvents. The maximum permissible error has a triangu-
ar distribution.

.2. Weighing

Mass determinations are prone to a large number of
ncertainty parameters: repeatability, non-linearity of the char-
cteristic curve (or response curve), sensitivity tolerance (or
lope tolerance of the characteristic curve), temperature coeffi-
ient, and buoyancy [11]. The relationships are not obvious and
ntuitive but rather complicated. In many cases the uncertainty
f a weighing operation is so small that it is not necessary to con-
ider it for the calculation of the combined standard uncertainty
f an analytical method. However, the situation is worse if the
eighing good is critical, i.e. if it is volatile or prone to become

lectrically charged (powders). In such cases the repeatability
ay be poor and must be determined experimentally.
Sometimes it is not the technical data of the balance,

hich dominate the total uncertainty but it is the buoyancy
erm [12]. Although it is possible to calculate this parame-
er it can be assumed that the densities of many weighing
oods are not known better than with a relative uncertainty of
0–40%. This uncertainty has a direct influence on the com-
ined uncertainty of the mass determination. Nevertheless the
ombined uncertainty is less (or much less) than 10−3 (1‰)
ven in cases of a high density uncertainty if the repeatability is
ood.

.3. Purity of standards and reference materials

The quantitative chromatographic methods are not primary
ethods but they need the comparison with a well-known

mount of reference compounds. The purity of a reference needs
o be taken into consideration, i.e. in many cases it is necessary
o correct the result by the decimal fraction of purity of the
eference (depending on the degree of purity and on the toler-
ted measurement uncertainty). Therefore the purity PR is noted
n Eq. (2). In fact, the purity is an influence parameter which

ust be considered in all uncertainty determinations, even in
he top-down approach with inter-laboratory reproducibility (see
ection 6 below).

Certified reference materials have a well-defined degree of
urity or of analyte content, including information about the
ncertainty. (It may, however, be a problem to find out if the

sign noted on the label means a standard deviation or the

oundaries of a rectangular distribution.) Elaborate analytical
xamples with certified reference materials can be found in the
UAM [2].

o

(
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Other chemicals give rather poor informations about their
urity with regard to measurement uncertainty. A common spec-
fication type is of the kind ≥9X.X%, e.g. ≥99.5%. Does such

declaration mean that the compound has a purity between
9.5% and 99.6% or is it highly probable that the purity
s close to 99.9%? One can take the interval between the
ower specified purity and 100% as the boundaries of a rect-
ngular distribution. In the case of a “≥99.5%” purity the
nterval has a width 2a of 0.5% (see Fig. 5b). This distribution
ives a standard uncertainty of 0.6a = 0.6 × 0.25% = 0.15% or
(P) = 0.0015.

A study with 40 commercially available compounds with a
eclared purity of either ≥97.0% or ≥99.0% showed that their
ontent is closer to 100% than to the lower limit and that an
symmetric ramp function is a reasonable description of both
he expected content and its uncertainty [13].

.4. Atomic and molecular weights

In chromatographic analyses the weights of atoms or
olecules do usually not appear in the equation of the mea-

urand, therefore this paragraph is included here only for
ompleteness of the discussion. In other analytical techniques,
.g. in titrimetry, these weights are a prerequisite for the calcu-
ation of the result and need to be considered for the uncertainty
etermination. For an example see Appendix A3 in the QUAM
2].

Atomic weights and their uncertainties are published regu-
arly by the IUPAC. The most recent list, the “Atomic Weights
f the Elements 2005” was published in 2006 [14]. The rela-
ive uncertainties range from approx. 1 × 10−9 for sodium to
× 10−4 for boron. It is an interesting fact that many elements
ave a rather high uncertainty of their atomic weight not due
o problems with mass determination by mass spectrometry but
ue to a poorly defined and non-uniform isotopic composition.
he IUPAC uncertainty data need to be taken as rectangular
istributions.

Molecular weights are sums of atomic weights, therefore
he calculation rule according to Eq. (7) is to be used for the
etermination of their uncertainty. The uncertainty of the atomic
ass fraction in a molecule must be calculated with partial dif-

erentials according to Eq. (5), thus leading to a complicated
xpression [15].

.5. Multiple-point calibration (linear regression)

The uncertainty of a calibration function can only be deter-
ined rather reliably if the fluctuations of the y values (the

eak areas or peak heights) are considerably higher than the
uctuations of the x values (the concentrations of the calibra-

ion solutions). The appendix E.3 of the QUAM presents some
pproximative equations which allow to calculate this uncer-
ainty [2]. However, such proposals are unsatisfactory. Three

ther strategies are better:

a) Use the Monte Carlo method. The possible variations of the
x/y data points must be known. For an x point, i.e. a concen-
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tration, the uncertainty can be calculated as a combination
of the weighing and diluting uncertainties. The variation of a
y point, i.e. a peak size, is determined by the n-fold injection
of the same solution.

b) Use a software, see Section 7 below.
c) Determine the uncertainty by experiments. Repeat n times

the whole steps of preparing a stock solution, preparing the
standard solutions, setting up the calibration function, inject-
ing a sample (always the same solution), and calculating the
analyte concentration in the sample. The resulting standard
deviation is the standard uncertainty of the calibration.

.6. Recovery

The recovery is a parameter which is studied during the vali-
ation, therefore its uncertainty is known as a standard deviation.
or reasons outlined in paragraph 3.3 it is not allowed to use the
tandard deviation of the mean as the relevant standard uncer-
ainty.

If the recovery is not determined but estimated it is necessary
o define a rather wide span with its possible lower and upper
imit, set by experience, and to treat this interval as a rectangular
istribution.

. A simple example

In Fig. 3 and in paragraph 3.2 a simple analytical test proce-
ure with one-point calibration was presented. The equation of
he measurand is as follows:

S = VPipR × cR × PR × VFlaskS × AS

VFlaskR × mS × AR

(2)

This is an equation with multiplicands and divisors only. For
he calculation of the combined standard uncertainty uc(cS) by
he bottom-up approach we can therefore use the calculation rule
oted in Eq. (6a); we get:

uc(cS)

cS

=
√(

0.0044 mL

1 mL

)2

+
(

0.06 mg/L

5.0 mg/L

)2

+
(

0.047 mL

100 mL

)2

We need knowledge of eight data and their standard uncer-
ainties.

Piston-driven pipet used for the volume of the aque-
us reference solution: VPipR = 1 mL. Its uncertainty is an
dditive combination of calibration uncertainty (8 �L), repeata-
ility (3 �L, both data according to the relevant norm

uc(cS)

cS

=
√(

u(VPipR)

VPipR

)2

+
(

u(cR)

cR

)2

+
(

u(PR)

PR

)2

+
(

u(VFla

VFlas
16]), and the temperature effect. The standard uncertain-
ies are: u(VCal) = 8 �L × 0.4 = 3.2 �L (triangular distribution);
(VRep) = 3 �L (the published value is a standard deviation);
(VT) = 1 mL × 2 × 10−4 K−1 × 1.2 K = 2.4 × 10−4 mL (Eq. 8)

t

c
d
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.0092+
(

0.047 mL

100 mL

)2

+ 0.00012+0.0062 = 0.0168 or 1.7%.

(12)

ith a rectangular temperature span in the laboratory of ±2 ◦C,
iving u(T) = 2 K × 0.6 = 1.2 K. The combined volume standard
ncertainty is:

(VPipR) =
√

3.22 + 32 + 0.242 �L = 4.4 �L (10)

Concentration of the reference solution: The manufacturer
uarantees a concentration of the analyte of 5.0 mg L−1 with
n uncertainty of ±0.1 mg L−1. We treat this information as
rectangular distribution and get a standard uncertainty of

(cR) = 0.1 mg L−1 × 0.6 = 0.06 mg L−1.
Purity of the reference solution: in our case with a certified

eference solution this term is already covered with the above-
entioned guarantee of the manufacturer. The purity term will

herefore not appear in our calculation of u(cS).
Measuring flasks used for the diluted sample and ref-

rence solutions: VFlask = 100 mL. Our considerations are
imilar as in the case of the pipet but we need only
he maximum permissible error (MPE) of ±0.100 mL [17]
nd the temperature effect. The standard uncertainties are:
(VMPE) = 0.100 mL × 0.4 = 0.04 mL (triangular distribution);
(VT) = 100 mL × 2 × 10−4 K−1 × 1.2 K = 0.024 mL. The com-
ined volume standard uncertainty is:

(VFlask) =
√

0.042 + 0.0242 mL = 0.047 mL (11)

Peak areas: we determined a relative repeatability of the
eference peak area of 0.6% and of the sample peak (in a
oorer chromatogram) of 0.9%. Therefore, u(AR)/AR = 0.006
nd u(AS)/AS = 0.009.

Mass of the sample: the sample is a coarse-grained solid
ith a well-known density of 1.2 kg dm−3. The relative stan-
ard uncertainty of the weighing operation can be assumed to
e not higher than 1 × 10−4 (100 ppm).

These data allow the calculation of the combined standard
ncertainty of the analyte concentration in the sample with
q. (9):

2

+
(

u(AS)

AS

)2

+
(

u(VFlaskR)

VFlaskR

)2

+
(

u(mS)

mS

)2

+
(

u(AR)

AR

)2

(9)

The largest influence parameter is the concentration of the
eference solution with a relative standard uncertainty of 1.2%.
n order to decrease the combined measurement uncertainty of
he analysis it would be best to look for a better reference mate-
ial. In addition, it is necessary to take such measures to keep
he long-term repeatability of the chromatography below 1%, a

ask which can be demanding [18].

Since the concentration of the reference dominates the
ombined measurement uncertainty its distribution function
ictates the expansion to the 95% level of confidence. It is
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rectangular distribution with a coverage factor krect = 1.65.
herefore the expanded relative measurement uncertainty U(cS)

s 1.7% × 1.65 = 2.8%.
This example was presented as a “simple” one. For the begin-

er the necessary calculations and considerations look rather
omplicated. However, it is a fact that one gets rapidly famil-
ar with them once some examples have been worked through.
elf-made Excel sheets for the calculation of the volume and
eighing uncertainties and of the combined uncertainty are a
reat help. In addition, with some experience one will get a
eeling of which influence parameters are of importance; in
any cases the largest contribution to the combined uncertainty

omes from the repeatability of the recovery. Then many other
ontributions are negligible.

. The top-down approach

The top-down method for the calculation of the measurement
ncertainty does not look at every detail as described in Section
. It starts from a repeatability or a reproducibility. The analyst
eeds a good knowledge of how the standard deviation of an
nalytical test procedure was determined in order to obtain a
eliable uncertainty.

The simplest repeatability is obtained by the n-fold injection
f the same solution. However, this approach has nothing to do
ith the combined measurement uncertainty but is only an ele-
ent of the bottom-up approach as described in the example

bove. The minimum requirement for a reliable uncertainty of
test procedure is the n-fold repetition of the whole procedure,

ncluding all weighing operations and the preparation of all ref-
rence and sample solutions. The obtained standard deviation
ust be amended with those influence parameters which were

ot altered but kept constant.
If, e.g. only one single piston-operated pipet is available in

he laboratory the standard deviation of the test procedure, i.e. its
epeatability, should be expanded by the calibration uncertainty
f this type of pipet:

uc(M)

M
=

√(
Rep(M)

M

)2

+
(

u(VCal)

V

)2

(13)

This example is a simple and probably not important one.
ut similar expansions should be done if the repeatability was
etermined by a single person or with a limited type of sam-
les. The most important parameter usually not included in a
epeatability or a reproducibility is the purity P of the reference
aterial, and it is often not a small one. Therefore the stan-

ard deviation of the test procedure needs to be corrected as
ollows:

uc(M)

M
=

√(
Rep(M)

M

)2

+
(

u(P)

P

)2

(14)
. Hints and tools

The bottom-up approach is an excellent tool to identify
he “weak points” of a test procedure with regard to its com-
A 1158 (2007) 15–24 23

ined measurement uncertainty. Working through the whole
rocess makes also clear if the standard operating procedure
s written clearly, completely and unambiguously. Sometimes

method can be simplified markedly, resulting in a lower
ncertainty [19].

Sample preparation steps should be kept simple and limited in
umber [20]. Small volumes (pipets or flasks) have a higher rela-
ive uncertainty than large ones. The parallel work-up of sample
nd reference keeps low the inevitable temperature drift effects
hich need to be considered. Using an internal standard is one
f the best techniques to keep low (or even to cancel) a num-
er of disturbing phenomena such as analyte recovery effects or
njection problems. Well-qualified personnel will obtain lower
ncertainties than non-skilled people.

The tedious calculation of measurement uncertainties can
e avoided by using dedicated software [21]. It allows the
etermination of the measurement uncertainty of analytical test
rocedures, including the sample preparation steps, by either the
ottom-up or the Monte Carlo approach.

. Conclusions

The determination of the measurement uncertainty of all val-
dated analytical test procedures should not be looked at as
n additional burden but as a worthwhile completion bring-
ng added value. Measurement uncertainty allows to evaluate

result and to compare it with other results, especially those
oming from other laboratories. The positive meaning of “mea-
urement uncertainty” must be communicated to the superiors
f the laboratory and to the customers.

A realistic measurement uncertainty datum is not too opti-
istic, i.e. too low, by using some repeatabilities which do

ot cover the whole analytical process or by using too narrow
oundaries of a distribution. Such a number is not honest and, in
ddition, it can complicate in an unnecessary way the communi-
ation with other laboratories, customers or authorities. On the
ther hand, it makes no sense to declare too high an uncertainty
y just guessing it.

The serious determination of measurement uncertainties is
ess complicated and demanding than it may seem at first glance.
he time and money needed to establish it in a laboratory is paid
ack by reliable analytical data.
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