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Abstract

Measurement uncertainty is a statistical parameter which describes the possible fluctuations of the result of a measurement. It is not a mere
repeatability but it is at least as high as the intra-laboratory reproducibility. If it is an attribute of a general analytical test procedure it is at least
as high as the inter-laboratory reproducibility. Measurement uncertainty can be determined by the addition of the variances of the individual steps
of the test procedure or by an approach which starts with one of the above-mentioned reproducibilities. Any measurement uncertainty should be
kept low but it is objectionable to state too low a value, e.g. by falsely reporting mere repeatability data instead of properly determined uncertainty
data. Some good working principles can help to obtain low measurement uncertainties.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Measurement results must be obtained under well-defined
conditions. Valid results, used as a base for decisions, trade,
legal actions or publications, must not be a stroke of luck but they
should get their authenticity by a carefully determined figure of
merit. The characteristic needed for all kinds of measurements
is the so-called measurement uncertainty. Its necessity was real-
ized earlier in physics than in chemistry, therefore an important
document, the so-called “GUM”, was published in 1993 (cor-
rected and reprinted in 1995) with a number of detailed examples
taken from physical measurement problems [1]. In paragraph
2.2.3 it defines the term “measurement uncertainty” as follows:

“Parameter, associated with the result of a measurement, that
characterizes the dispersion of the values that could reason-
ably be attributed to the measurand.”

Based on the principles described in the GUM, a similar doc-
ument for analytical chemistry came out in 1995, called the
“QUAM?”; the now valid second edition is from 2000 [2]. It can
be downloaded from the Internet free of charge and all persons in
the company which are involved in quality management should
have a personal copy. In addition, the “GUM?” should at least be
found in the library because it gives more mathematical back-
ground and is the relevant document in difficult or questionable
cases.

The measurement uncertainty datum is the spouse of a result
because no industrial, commercial or governmental laboratory
will produce results just for the fun of it. A result will be judged
or compared with others and will lead to a decision, e.g. pass
versus fail, accept versus reject, implement an action or not. Two
possible scenarios are shown in Fig. 1. One of them illustrates
the situation with a legal limit of the concentration of a pesti-
cide in food. In order to protect the consumers the commodity
must be rejected even if the mean analytical result is below the
limit in a case where the sum of result and uncertainty is higher
than the limit. The other illustration shows the comparability
of results found by different laboratories (such as producer and
customer, pharmaceutical industry and drug control etc.). The
two parties involved will not have an argument if their results
plus uncertainties have some overlap.

The norm ISO 17025, “General requirements for the com-
petence of testing and calibration laboratories”, demands the
determination of the measurement uncertainty of analytical
results in paragraph 5.4.6 [3].

2. Top-down and bottom-up approach for the
determination of the measurement uncertainty

It is well known that repeatability, described as a standard
deviation, a relative standard deviation or a coefficient of varia-
tion, covers only a limited part of the possible fluctuation of an
analytical result. Moreover, one will not get the same standard
deviation if the same sample solution is injected consecutively
several times into the chromatograph or if the whole sample
preparation is repeated several times, resulting in n different
sample solutions (n being at least 3 but preferably higher). The

latter standard deviation will be higher because now also all
the little fluctuations of weighing, dilution, recovery etc. will
add to the standard deviation of the chromatographic instrument
and process. The highest intra-laboratory repeatability, the so-
called intermediate precision [4], is obtained by repeating the
analysis on different days, with different instrumentation and so
on. The standard deviation is even higher if several laborato-
ries at different locations are involved; this value is called the
(inter-laboratory) reproducibility, see Fig. 2. It is high because
the different instruments involved (not only chromatographs
but also pipets, etc.) differ in their calibration and repeatability
and because the different people have their individual working
style. The reproducibility can be identical with the measurement
uncertainty of the test procedure if the purity of the reference
compound is not an important parameter of the uncertainty bud-
get (see paragraph 4.3 below). This approach which obtains
a measurement uncertainty from reproducibility is called the
top-down method.

The opposite is the bottom-up approach, calculating the
uncertainty by the addition of variances:

B u@\?2  (uB)\®  (u@)\?  [(ud)\?
"C(M)_M\/(a)+<b>+(c)+<d>
(D

for a measurand M (i.e. an analytical result) if the equation for
the calculation of M is based only on multiplications and divi-
sions such as M =(a x b x c)/d (see paragraph 3.5 below). u(x)
is the standard uncertainty of factor x and u.(M) is the combined
uncertainty.

The bottom-up approach can be tedious if the calculations are
done with a pocket calculator. On the other hand, it is illustrative
and forces the analyst to understand the details of the test pro-
cedure in question. Therefore, the bottom-up approach is a tool
which identifies the parameters or working steps with an overly
contribution to the total uncertainty, thus offering the chance to
improve them.

3. Some tools for the determination of measurement
uncertainty

3.1. Flow diagram and Ishikawa diagram

For the correct determination of measurement uncertainty,
and especially for the bottom-up approach, it is essential that
the analyst understands the analytical test procedure. It should
be described in detail in a standard operating procedure (SOP).
If this was done correctly it is not difficult to draw a flow dia-
gram of the individual working steps of the method. (If this task
is difficult the SOP is not complete or not clear, resulting in frus-
trated personnel.) Drawing flow diagrams is not mandatory but
very helpful. Fig. 3 shows the diagram of a simple analysis with
one-point calibration.

An Ishikawa diagram or cause-and-effect diagram (some-
times also termed fishbone diagram) is a useful tool to identify
the influence parameters, i.e. the sources of uncertainty, of a
whole test procedure or of a single working step [5-7]. By
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Fig. 1. A result without measurement uncertainty can lead to problems. Left: results A and B are below the maximum allowed pesticide concentration even when their
measurement uncertainty is taken into consideration. The mean of result C is below the limit but there is a certain possibility that the maximum allowed concentration
is transgressed because of its uncertainty; the food sample will be rejected. Result D has the same consequence although there is some possibility that the limit is not
transgressed. Right: A certain sample is analysed by three different laboratories. A and B will accept the results of each other, and so will do laboratories B and C.

However, laboratories A and C will run into an argument.
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Fig. 2. The six-fold injection of the same sample (a) will yield a lower repeatability (measured as standard deviation) than the six-fold preparation of the same
sample (b). If the six preparations are performed on different days (c) the standard deviation will be even higher and the number is called “intermediate precision”
(or “day-to-day precision” in this case). If the same sample is investigated in different laboratories (d) the resulting standard deviation is highest and is called

“reproducibility”.
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Fig. 3. The flow diagram of a simple chromatographic analysis.

drawing such a structure one can identify, sort and discuss these
parameters. Arrows of first, second and if necessary also higher
order point from causes (e.g. the operating repeatability of a
pipet) to effects (e.g. a volume or, finally, to the analytical result).
Fig. 4 is the Ishikawa diagram of the process shown in Fig. 3.

3.2. Equation of the measurand

The measurand, i.e. the equation for the calculation of the
analytical result, must be noted in detail. Usually a calculation
is not done with the operation (peak area of sample/peak area of
reference) x (concentration of reference solution). The equation
for the analysis shown in Fig. 3 is as follows:

. VPipr X CR X PR X VEiasks X Ag
S =

2
VElaskR X s X AR
with ¢ = concentration, Vpjp = volume of a pipet, Vpjask = volume
of a measuring flask, P=purity, A =peak area, m =mass; the
index S refers to the sample and the index R to the reference.
The detailed equation of the measurand must be noted in the
SOP. In fact, it is the starting point of the Ishikawa diagram.
Although such a diagram can be drawn by free association it
should afterwards be compared with the equation. Every fac-
tor of the equation must appear in the diagram. (The Ishikawa
diagram may show more arrows than factors.)

3.3. Standard deviations

Preliminary remark: the standard uncertainties u(x) in Eq.
(1) can be standard deviations but they can also be of another
type of distribution. Standard deviations are determined by the
n-fold repeat of a measurement; they are a characteristic of nor-
mally (Gaussian) distributed data, the typical feature of results
which show some accidental fluctuations when the experiment
is repeated. If the standard uncertainties cannot be obtained by
experiments they are assigned another type of distribution, see
paragraph 3.4 below.

By the repeated determination of an influence parameter of
measurement uncertainty one gets its standard deviation s(x)
which describes the scatter of the results: approx. 68% will lie
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Fig. 4. The Ishikawa diagram with the uncertainty sources of the measurement uncertainty of the analysis shown in Fig. 3.
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between x & 1s and 95% between x £ 2s if the number of mea-
surements 7 is large (whereby “large” is not defined, personally
I propose to set n > 10 for a rather reliable standard deviation).

1 & B
s(x) = ml;(xi—xﬂ 3)

A cognate number of merit is the standard deviation of the
mean s(X), obtained by dividing s(x) by /n:

s R ST
) == = —n(n_l)l;(xl %) “)

s(x) is a smaller number than s(x), therefore one can be tempted
to use it for the calculation of the measurement uncertainty of
repeated measurements. However, s(X) must only be used if a
certain well-defined object or a certain well-defined and finished
process is described. As an example, if a single coin is weighed
n times we will ascribe the standard deviation of the mean s(72)
to the mean mass /7. On the other hand, if a recovery is deter-
mined n times in order to know its expected mean value for the
next analysis or for many future analyses we must use the stan-
dard deviation of the recovery s(Rec) according to Eq. (3). This
assignment follows from the fact that the next analysis will pro-
vide its own (but unknown to us) recovery, which can be close
to the mean or in a region, which is as far apart from the mean
as 2s. Similarly, any parameter characterized with a repeatabil-
ity will contribute its standard deviation s(x) to the uncertainty
calculation, i.e. a u(x) of Eq. (1) will be an s(x) in these cases.

Fig. 5a shows the bell-shaped function of the normal distri-
bution with the areas covered by & 1s and =& 2s.

3.4. Other standard uncertainties

In many cases it is not possible or it would be too time-
consuming to determine the variability of an uncertainty source
by repeated experiments. Therefore, its standard uncertainty is
not a standard deviation but is characterized by another type
of distribution. Although distributions can have many different

@) (b)

shapes, including asymmetric ones, the QUAM uses only two of
them, namely the rectangular and the triangular distribution. In
contrast to the normal distribution with “open ends” they cover
a limited span of data and have clear boundaries.

A rectangular distribution (Fig. 5b) is chosen if no detailed
knowledge of the function is available. A typical and impor-
tant example is the temperature in a laboratory without
air-conditioning over a certain time-span, e.g. a day or a year.
The known or assumed temperature extremes, e.g. 18-25 °C, are
the boundaries of the distribution. Its width is 2a (which means
7 °C in the example given above), its standard uncertainty u(x) is
a/\/30r0.6a (giving 0.6 x 3.5°C=2.1°C). The span of X £ u(x)
covers 58% of the data.

The triangular distribution (Fig. 5c) is chosen if there is a
higher probability for the data to lie in the middle of the interval
of 2a than at the boundaries. Such a distribution can be assumed
for the volume of a measuring flask. The manufacturing pro-
cess is optimized in such a way that the desired volume of, e.g.
250.0 mL is hit more often than one of 249.9 mL or 250.1 mL.
The standard uncertainty of the triangular distribution u(x) is
a/\/6 or 0.4a, giving u(V)=0.4 x 0.1 mL=0.04 mL. The span
of X & u(x) covers 65% of the data.

3.5. Calculation rules

The standard uncertainties u(x;) of the individual uncertainty
sources x; are added to the combined uncertainty u.(M) of the
measurand. The general rule is as follows: set up the equation of
the measurand M. Determine the partial differentials of M with
respect to all x;, square them, multiply them with the respective
u*(x;), add all the summands, and extract the root:

" oM\
uc(M) = Z(ax) u(x;) )

i=1

If the equation of M is not simple, e.g. if it includes summands
and multiplicands (such as M =(a+b)/(c — d) or the like), the
partial differentials can have a complicated structure and the
result u.(M) is even more intricate. However, for many relevant
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Fig. 5. Distribution functions. (a) Normal distribution with standard uncertainty u(x)=standard deviation s(x). The area of X £ s(x) covers 68% of the data. (b)
Rectangular distribution with standard uncertainty u(x)=0.6a. The shaded area of X & u(x) covers 58% of the data. (c) Triangular distribution with standard

uncertainty u(x)=0.4a. The shaded area of X & u(x) covers 65% of the data.
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equations the instruction of Eq. (5) leads to simpler expressions.
If the equation for M consists only of multiplicands and divisors,
such as M =(a x b)/(c x d), Eq. (5) simplifies to:

(6a)

(6b)

Eq. (6a) gives the relative uncertainty (the percentage rela-
tive uncertainty is obtained by multiplication with 100) and Eq.
(6b) gives the absolute uncertainty with the same unit as the
measurand itself, e.g. mg/kg.

This type of equation is very common in analytical chemistry.
Another simple class of equations, less frequently seen, are those
with only summands (positive or negative ones). They occur, e.g.
in the calculation of molecular weights or in the determination
of the loss on drying. A measurand of the type M=a+b—c
leads to:

uc(M) = N

3.6. Monte Carlo method

The calculation rules given above are typical for the bottom-
up approach (although some calculations may also be needed in
the top-down approach). These rules can lead to a complicated
and tedious calculation of the combined measurement uncer-
tainty. An elegant way out is the determination of u.(M) by the
Monte Carlo method [8]. It is based on the n-fold calculation of
M with randomly generated values of the influence parameters.
These numbers lie somewhere within their uncertainty bound-
aries around the specified value with a probability given by their
relevant distribution function. n must be very high, 10,000 cal-
culations are a minimum. Therefore, a Monte Carlo simulation
will not run on an old or cheap personal computer but it can be
performed on a PC with reasonable configuration within some
minutes.

Monte Carlo has the advantage that the equation of the mea-
surand can be of any complexity. It is not necessary to determine
the partial differentials. In addition, multiple-point calibrations
or correlated influence parameters are no problem and the result-
ing combined standard uncertainty is correct in all cases.

3.7. Expanded uncertainty

It was explained in paragraphs 3.3 and 3.4 that the stan-
dard uncertainties of the described distribution functions cover
a range of 68%, 58% or 65% of the expected data. However,
what is usually needed is a 95% level of confidence (only 5%
of the experiments will yield a result which is outside of this
range). Therefore, a standard uncertainty needs to be expanded

with its appropriate coverage factor k. The resulting expanded
uncertainty has the symbol U without index: U(M) =u.(M) x k.

The coverage factor of a normal distribution is 2 (strictly
speaking, it is 1.96 to cover 95.0%). For a rectangular distribu-
tion it is 1.65 and for a triangular distribution it is 1.93.

In the case of a combined standard uncertainty u.(M) the
expansion can be somewhat more intricate. It depends on the
type of distribution, which dominates the combined uncertainty,
i.e. which parameter is largest in an equation such as Eq. (1). In
many cases this is the normal distribution; then the expansion is 2
if the number of experiments was high, namely 20 or higher. With
fewer experiments the coverage factor is defined by Student’s
t-distribution [9]. With n=3 it is necessary to multiply the +1s
uncertainty with k=4.3, with n=4 the factor is still k=3.2 and
drops only slowly to k=2.3 with n=10. It is obvious that a
small number of experiments is “punished” with a large coverage
factor.

If a term with rectangular or triangular distribution function
is the dominating one the coverage factor is independent of the
number of experiments and is 1.65 or 1.93, respectively.

If several terms with different distribution functions are of
similar magnitude the central limit theorem states that the overall
distribution converges rapidly to a normal distribution [10]. For
details see the GUM, paragraph H.2 [1].

4. Some basic uncertainty sources
4.1. Volumetric operations

The uncertainty of the volume of a measuring flask or a
pipet has three uncertainty sources, namely the calibration, the
repeatability, and the temperature influence. (Note: the QUAM
does not list the possible ageing of a glass volumetric instru-
ment as an additional uncertainty source. To our experience it
can only occur if a strongly basic solution is stored in a burette
over a long time period; even then, the effect is low and needs
to be taken into consideration on a metrological level only.)
The calibration uncertainty is subject to a triangular distribu-
tion because the manufacturer strives for the nominal volume.
It can be found on the instrument itself or in the data sheet. The
repeatability has a normal distribution (the standard deviation,
not the standard deviation of the mean). If no data are available it
must be determined experimentally. Note that published data are
valid for water only; the repeatability is poorer with organic sol-
vents, viscous solvents or water with detergent, and if untrained
personnel is doing the work. The temperature influence has a
rectangular (if no detailed temperature data are available) or a
triangular distribution (if the laboratory is air-conditioned).

Temperature fluctuations result in a volume fluctuation
according to:

u(V) = Vyu(T) (8)

with y being the cubic coefficient of volume expansion;
y=2.1 x 107*K~! for water (in the vicinity of 20°C) and
y 21 x 1073 K~! for organic solvents. The coefficient of expan-
sion of glass instruments is smaller, therefore it is not of
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importance. On the other hand, plastics used for flasks or pipets
(polypropylene or polymethylpentene) have a coefficient similar
to liquids, which leads to the consequence that the temperature
term is negligible if such instruments are used.

In glass flasks and glass pipets the calibration and repeatabil-
ity terms are combined to the so-called “maximum permissible
error”’. This is the number engraved or printed on such instru-
ments close to the nominal volume, e.g. 10 mL +0.025 mL. It
is only valid for aqueous solutions and is probably larger for
organic solvents. The maximum permissible error has a triangu-
lar distribution.

4.2. Weighing

Mass determinations are prone to a large number of
uncertainty parameters: repeatability, non-linearity of the char-
acteristic curve (or response curve), sensitivity tolerance (or
slope tolerance of the characteristic curve), temperature coeffi-
cient, and buoyancy [11]. The relationships are not obvious and
intuitive but rather complicated. In many cases the uncertainty
of a weighing operation is so small that it is not necessary to con-
sider it for the calculation of the combined standard uncertainty
of an analytical method. However, the situation is worse if the
weighing good is critical, i.e. if it is volatile or prone to become
electrically charged (powders). In such cases the repeatability
may be poor and must be determined experimentally.

Sometimes it is not the technical data of the balance,
which dominate the total uncertainty but it is the buoyancy
term [12]. Although it is possible to calculate this parame-
ter it can be assumed that the densities of many weighing
goods are not known better than with a relative uncertainty of
1040%. This uncertainty has a direct influence on the com-
bined uncertainty of the mass determination. Nevertheless the
combined uncertainty is less (or much less) than 1073 (1%0)
even in cases of a high density uncertainty if the repeatability is
good.

4.3. Purity of standards and reference materials

The quantitative chromatographic methods are not primary
methods but they need the comparison with a well-known
amount of reference compounds. The purity of a reference needs
to be taken into consideration, i.e. in many cases it is necessary
to correct the result by the decimal fraction of purity of the
reference (depending on the degree of purity and on the toler-
ated measurement uncertainty). Therefore the purity Pp is noted
in Eq. (2). In fact, the purity is an influence parameter which
must be considered in all uncertainty determinations, even in
the top-down approach with inter-laboratory reproducibility (see
Section 6 below).

Certified reference materials have a well-defined degree of
purity or of analyte content, including information about the
uncertainty. (It may, however, be a problem to find out if the
= sign noted on the label means a standard deviation or the
boundaries of a rectangular distribution.) Elaborate analytical
examples with certified reference materials can be found in the
QUAM [2].

Other chemicals give rather poor informations about their
purity with regard to measurement uncertainty. A common spec-
ification type is of the kind >9X.X%, e.g. >99.5%. Does such
a declaration mean that the compound has a purity between
99.5% and 99.6% or is it highly probable that the purity
is close to 99.9%? One can take the interval between the
lower specified purity and 100% as the boundaries of a rect-
angular distribution. In the case of a “>99.5%” purity the
interval has a width 2a of 0.5% (see Fig. 5b). This distribution
gives a standard uncertainty of 0.6a=0.6 x 0.25% =0.15% or
u(P)=0.0015.

A study with 40 commercially available compounds with a
declared purity of either >97.0% or >99.0% showed that their
content is closer to 100% than to the lower limit and that an
asymmetric ramp function is a reasonable description of both
the expected content and its uncertainty [13].

4.4. Atomic and molecular weights

In chromatographic analyses the weights of atoms or
molecules do usually not appear in the equation of the mea-
surand, therefore this paragraph is included here only for
completeness of the discussion. In other analytical techniques,
e.g. in titrimetry, these weights are a prerequisite for the calcu-
lation of the result and need to be considered for the uncertainty
determination. For an example see Appendix A3 in the QUAM
[2].

Atomic weights and their uncertainties are published regu-
larly by the IUPAC. The most recent list, the “Atomic Weights
of the Elements 2005” was published in 2006 [14]. The rela-
tive uncertainties range from approx. 1 x 10~ for sodium to
7 x 10~ for boron. It is an interesting fact that many elements
have a rather high uncertainty of their atomic weight not due
to problems with mass determination by mass spectrometry but
due to a poorly defined and non-uniform isotopic composition.
The TUPAC uncertainty data need to be taken as rectangular
distributions.

Molecular weights are sums of atomic weights, therefore
the calculation rule according to Eq. (7) is to be used for the
determination of their uncertainty. The uncertainty of the atomic
mass fraction in a molecule must be calculated with partial dif-
ferentials according to Eq. (5), thus leading to a complicated
expression [15].

4.5. Multiple-point calibration (linear regression)

The uncertainty of a calibration function can only be deter-
mined rather reliably if the fluctuations of the y values (the
peak areas or peak heights) are considerably higher than the
fluctuations of the x values (the concentrations of the calibra-
tion solutions). The appendix E.3 of the QUAM presents some
approximative equations which allow to calculate this uncer-
tainty [2]. However, such proposals are unsatisfactory. Three
other strategies are better:

(a) Use the Monte Carlo method. The possible variations of the
x/y data points must be known. For an x point, i.e. a concen-
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tration, the uncertainty can be calculated as a combination
of the weighing and diluting uncertainties. The variation of a
y point, i.e. a peak size, is determined by the n-fold injection
of the same solution.

(b) Use a software, see Section 7 below.

(c) Determine the uncertainty by experiments. Repeat n times
the whole steps of preparing a stock solution, preparing the
standard solutions, setting up the calibration function, inject-
ing a sample (always the same solution), and calculating the
analyte concentration in the sample. The resulting standard
deviation is the standard uncertainty of the calibration.

4.6. Recovery

The recovery is a parameter which is studied during the vali-
dation, therefore its uncertainty is known as a standard deviation.
For reasons outlined in paragraph 3.3 it is not allowed to use the
standard deviation of the mean as the relevant standard uncer-
tainty.

If the recovery is not determined but estimated it is necessary
to define a rather wide span with its possible lower and upper
limit, set by experience, and to treat this interval as a rectangular
distribution.

5. A simple example

In Fig. 3 and in paragraph 3.2 a simple analytical test proce-
dure with one-point calibration was presented. The equation of
the measurand is as follows:

_ Vpipr X cr X PR X VFlasks X As

@)

cs
VFlaskr X ms X AR
This is an equation with multiplicands and divisors only. For
the calculation of the combined standard uncertainty u.(cs) by
the bottom-up approach we can therefore use the calculation rule
noted in Eq. (6a); we get:

with a rectangular temperature span in the laboratory of +2 °C,
giving u(T) =2 K x 0.6=1.2 K. The combined volume standard
uncertainty is:

u(Voipr) = V322 432 +0.242 pL =4.4pL (10)

Concentration of the reference solution: The manufacturer
guarantees a concentration of the analyte of 5.0mgL~! with
an uncertainty of 0.1 mgL~!. We treat this information as
a rectangular distribution and get a standard uncertainty of
u(cg)=0.1mgL~! x0.6=0.06mgL~".

Purity of the reference solution: in our case with a certified
reference solution this term is already covered with the above-
mentioned guarantee of the manufacturer. The purity term will
therefore not appear in our calculation of u(cy).

Measuring flasks used for the diluted sample and ref-
erence solutions: Vppask=100mL. Our considerations are
similar as in the case of the pipet but we need only
the maximum permissible error (MPE) of £0.100mL [17]
and the temperature effect. The standard uncertainties are:
u(Vape) =0.100mL x 0.4=0.04 mL (triangular distribution);
u(Vy)=100mL x 2 x 1074 K~ x 1.2 K =0.024 mL. The com-
bined volume standard uncertainty is:

u(Viask) = V0.04% +0.024> mL = 0.047 mL (11)

Peak areas: we determined a relative repeatability of the
reference peak area of 0.6% and of the sample peak (in a
poorer chromatogram) of 0.9%. Therefore, u(Ag)/Ag=0.006
and u(As)/As=0.009.

Mass of the sample: the sample is a coarse-grained solid
with a well-known density of 1.2kgdm™3. The relative stan-
dard uncertainty of the weighing operation can be assumed to
be not higher than 1 x 10~* (100 ppm).

These data allow the calculation of the combined standard
uncertainty of the analyte concentration in the sample with

Eq. (9):

ucles) _ (u(vpip;e)>2 +<u(cR>)2 +(u<PR>)2 +(u<vmasks)
cs Vpipr CR Pg VElasks

2 (u(ADN\? | (u(Vaaskr)\ | (ums)\* [ u(AR)\?
) +( As ) +( VElaskr ) +( mg ) +( AR >

C))

cs I mL 5.0mg/L 100 mL

We need knowledge of eight data and their standard uncer-
tainties.

Piston-driven pipet used for the volume of the aque-
ous reference solution: Vpjpr=1mL. Its uncertainty is an
additive combination of calibration uncertainty (8 L), repeata-
bility (3L, both data according to the relevant norm
[16]), and the temperature effect. The standard uncertain-
ties are: u(Vca) =8 pL x 0.4 =3.2 pL (triangular distribution);
u(VRep) =3 L (the published value is a standard deviation);
u(Vr)=1mL x2x 1074 K~ x 1.2K=2.4 x 10~*mL (Eq. 8)

0.0044mL\% /0.06mg/L\> /0.047mL\?> 0.047 mL\ 2
”C(CS)z\/< o ) +< mg/ ) +< o ) +0.0092+(m) +0.0001%2+0.0062 = 0.0168 or 1.7%.

100 mL (12)

The largest influence parameter is the concentration of the
reference solution with a relative standard uncertainty of 1.2%.
In order to decrease the combined measurement uncertainty of
the analysis it would be best to look for a better reference mate-
rial. In addition, it is necessary to take such measures to keep
the long-term repeatability of the chromatography below 1%, a
task which can be demanding [18].

Since the concentration of the reference dominates the
combined measurement uncertainty its distribution function
dictates the expansion to the 95% level of confidence. It is
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a rectangular distribution with a coverage factor kpect=1.65.
Therefore the expanded relative measurement uncertainty U(cg)
is 1.7% x 1.65=2.8%.

This example was presented as a “simple” one. For the begin-
ner the necessary calculations and considerations look rather
complicated. However, it is a fact that one gets rapidly famil-
iar with them once some examples have been worked through.
Self-made Excel sheets for the calculation of the volume and
weighing uncertainties and of the combined uncertainty are a
great help. In addition, with some experience one will get a
feeling of which influence parameters are of importance; in
many cases the largest contribution to the combined uncertainty
comes from the repeatability of the recovery. Then many other
contributions are negligible.

6. The top-down approach

The top-down method for the calculation of the measurement
uncertainty does not look at every detail as described in Section
5. It starts from a repeatability or a reproducibility. The analyst
needs a good knowledge of how the standard deviation of an
analytical test procedure was determined in order to obtain a
reliable uncertainty.

The simplest repeatability is obtained by the n-fold injection
of the same solution. However, this approach has nothing to do
with the combined measurement uncertainty but is only an ele-
ment of the bottom-up approach as described in the example
above. The minimum requirement for a reliable uncertainty of
a test procedure is the n-fold repetition of the whole procedure,
including all weighing operations and the preparation of all ref-
erence and sample solutions. The obtained standard deviation
must be amended with those influence parameters which were
not altered but kept constant.

If, e.g. only one single piston-operated pipet is available in
the laboratory the standard deviation of the test procedure, i.e. its
repeatability, should be expanded by the calibration uncertainty
of this type of pipet:

uc(M) | (Rep(M)\*  (u(Vea)\’
Mo (M)+(V> (43

This example is a simple and probably not important one.
But similar expansions should be done if the repeatability was
determined by a single person or with a limited type of sam-
ples. The most important parameter usually not included in a
repeatability or a reproducibility is the purity P of the reference
material, and it is often not a small one. Therefore the stan-
dard deviation of the test procedure needs to be corrected as
follows:

ue(M) [ Rep(M)\* = (u(P)\?
M—¢<AM)+(;>> (1

7. Hints and tools

The bottom-up approach is an excellent tool to identify
the “weak points” of a test procedure with regard to its com-

bined measurement uncertainty. Working through the whole
process makes also clear if the standard operating procedure
is written clearly, completely and unambiguously. Sometimes
a method can be simplified markedly, resulting in a lower
uncertainty [19].

Sample preparation steps should be kept simple and limited in
number [20]. Small volumes (pipets or flasks) have a higher rela-
tive uncertainty than large ones. The parallel work-up of sample
and reference keeps low the inevitable temperature drift effects
which need to be considered. Using an internal standard is one
of the best techniques to keep low (or even to cancel) a num-
ber of disturbing phenomena such as analyte recovery effects or
injection problems. Well-qualified personnel will obtain lower
uncertainties than non-skilled people.

The tedious calculation of measurement uncertainties can
be avoided by using dedicated software [21]. It allows the
determination of the measurement uncertainty of analytical test
procedures, including the sample preparation steps, by either the
bottom-up or the Monte Carlo approach.

8. Conclusions

The determination of the measurement uncertainty of all val-
idated analytical test procedures should not be looked at as
an additional burden but as a worthwhile completion bring-
ing added value. Measurement uncertainty allows to evaluate
a result and to compare it with other results, especially those
coming from other laboratories. The positive meaning of “mea-
surement uncertainty” must be communicated to the superiors
of the laboratory and to the customers.

A realistic measurement uncertainty datum is not too opti-
mistic, i.e. too low, by using some repeatabilities which do
not cover the whole analytical process or by using too narrow
boundaries of a distribution. Such a number is not honest and, in
addition, it can complicate in an unnecessary way the communi-
cation with other laboratories, customers or authorities. On the
other hand, it makes no sense to declare too high an uncertainty
by just guessing it.

The serious determination of measurement uncertainties is
less complicated and demanding than it may seem at first glance.
The time and money needed to establish it in a laboratory is paid
back by reliable analytical data.
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