
W
hi

te
 P

ap
er

Calculation of Measurement Uncertainty 
 An Example for Titration

Measurement results must encompass statistic evaluation and uncertainty estimation to 
comply with quality standards and to be complete. Strictly speaking, the result of a chemical 
analysis is meaningless without an indication of the uncertainty involved in its measurement. 
A realistic estimate of measurement uncertainty is therefore crucial for achieving analytical 
quality in the laboratory.
 
This text explains how this parameter is estimated for a typical titration. The example chosen 
was the determination of the concentration of a freshly prepared solution of sodium hydroxide 
using potassium hydrogen phthalate as the primary standard.
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Many important decisions are nowadays based on the results of chemical analyses. For example, the results are 
used to determine the yield in production processes, to check materials with regard to specifications (i.e. quality 
control QC), or to evaluate compliance with a statutory limit. Such decisions often involve large sums of money. 
This applies especially to pharmaceutical, food & beverage, cosmetic and chemical companies due to tight 
regulations. However, other industries are concerned as well.

For this reason, laboratories that supply such analytical chemical results must be able to ensure that they pro-
vide adequate quality assurance measures. These measures include validated analytical procedures, internal 
quality assurance procedures, participation in interlaboratory comparison, accreditation according to  
ISO/IEC/EN 17025 (2005), the medical technical field ISO 15189 (2007–2008) and the traceability of measure-
ment results.

The aim of all these activities is to document the quality of the analytical results by providing a value for their 
trustworthiness and reliability. A very useful and widely accepted concept is the uncertainty of measurement 
(measurement uncertainty or simply uncertainty). This is defined as a parameter associated with the result of 
a measurement, which characterizes the range of values within which the quantity being measured (the mea-
surand) is expected to lie with a stated level of confidence.

Although measurement uncertainty 
has long been recognized as a 
concept in analytical chemistry, it 
was the publication of the “Guide 
to the Expression of Uncertainty in 
Measurement (GUM)” [1] in 1993, 
which first formally established 
general rules for evaluating and 
expressing uncertainty in measure-
ment. 

Another seven years passed before 
the Eurachem/CITAC Guide entitled 
“Quantifying Uncertainty in Analyti-
cal Measurement (QUAM)[2] ap-
peared with procedures of a more 
practical nature and more suitable 
for analytical chemistry. 

The following text describes how this concept is applied in practice using a commonly performed titration as an 
example.
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2.   The Four Main Steps

The procedure for calculating the measurement uncertainty of results determined in a chemical analysis consists 
of the following four steps:
 
Step 1: Specifying the measurand 
Step 2: Identifying all the relevant sources of uncertainty
Step 3: Quantifying the different uncertainty components
Step 4: Calculating the combined measurement uncertainty

The implementation of these four steps in practice for a titration is shown for the determination of the concentra-
tion of a freshly prepared CO2-free solution of sodium hydroxide (NaOH) using potassium hydrogen phthalate 
(KHP) as the primary standard. The NaOH concentration is about 0.1 mol/L. This is calculated from the con-
sumption up to the equivalence point of the potentiometric titration curve.
 

 2.1  Step 1 – Specifying the Measurand

The aim of this first step is to describe the titration procedure as it is performed in the laboratory. This informa-
tion is already available in part in standard operating procedures (SOPs). They describe the individual steps of 
the analytical procedures and the equation of the measurand with all variables and parameters from which it 
directly depends, such as the consumption of NaOH up to the equivalence point. 
 

  Titration procedure
The titration procedure consists of the following stages (Fig. 1):
1. The KHP is dried according to the instructions of the supplier and a sample 

weighed out on an analytical balance with a resolution of 0.1 mg.
2. A fresh solution of approximately 0.1 mol/L NaOH is prepared, taking all 

measures necessary to ensure that the solution is free of CO2.
3. The weighed sample of KHP is dissolved in about 50 mL deionized water 

and then titrated with the NaOH solution. The consumption of sodium 
hydroxide is determined up to the equivalence point of the potentiometric 
titration curve recorded by the titrator.

 

  Equation of the measurand
The equation of the measurand corresponding to the concentration of a 
freshly prepared sodium hydroxide solution is as follows:

CNaOH = 10 ∙ pKHP ∙ mKHP / VEQ ∙ MKHP

CNaOH: Measurand: concentration of the sodium hydroxide (NaOH)  —› mol/L
pKHP: Purity of the KHP standard [3]  —› %
mKHP: Sample mass of the KHP standard  —› g
VEQ: Consumption of NaOH up to the equivalence point —› mL
MKHP: Molar mass of the KHP standard —› g/mol

Einwaage KHP

Herstellung NaOH

Titration

RESULTAT

Weighing KHP

Preparing NaOH

Titration

Result

Pesée KHP

Préparation NaOH

Titration

RESULTAT

Figure 1: The different stages of the titration 
procedure.
Figure 1: The different stages of the titration 
procedure.
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The aim of the second step is to identify all the major sources of uncertainty and to understand their effect on the 
uncertainty of measurement of the measurand. This has been shown to be one of the most difficult steps in eval-
uating the uncertainty of a measurement result. On the one hand, there is a risk of neglecting important sources 
of uncertainty and on the other hand of double-counting other influences. The use of a cause and effect diagram 
is a good way to avoid this. It has 
proven itself in practice. The first 
step in preparing the diagram is 
to draw the four parameters of the 
equation of the measurand as the 
main branches. 

Afterward, each step of the analyti-
cal procedure is examined more 
closely and any further influence 
factors on a parameter or the mea-
surand are entered in the diagram. 
This is carried out working outward 
along each branch until the influ-
ences are so unimportant that their 
effect on the result and its uncer-
tainty are negligible[4] (Fig. 3). 
 

  Purity of the KHP primary standard (pKHP)
The purity of the KHP primary standard is quoted in the supplier’s catalog to be within the limits of 99.9% and 
100.1%. There are no further sources of un certainty if the primary standard is dried according to the supplier’s 
specifications. 
 

  Sample mass of the primary standard KHP (mKHP)
The mass of the KHP standard is determined by difference weighing. The empty beaker is first placed on the bal-
ance to determine its tare weight. The primary standard is then added to the beaker and then the gross weight 
measured. For both these mea-
surements, the possible difference 
between the mass recorded by the 
balance and the actual mass on 
the balance pan must be taken into 
account as a source of uncertainty. 

This difference is called the linearity 
by the manufacturer. For the differ-
ence weighing only one repeatabil-
ity can be determined. These three 
influence factors are entered as 
sources of uncertainty in the cause 
and effect diagram. 
 

  

Figure 2: Cause and effect diagram with the four main branches: purity, sample mass and 
molar mass of the KHP standard, and the consumption of NaOH up to the equivalence point.
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Figure 3: Cause and effect diagram showing all the relevant sources of uncertainty.
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  Molar mass of the KHP primary standard (MKHP)
The uncertainty in the molar mass of KHP can be determined by combining the uncertainty in the atomic 
masses of its constituent elements. This uncertainty contribution is negligible in comparison to all other sources 
of uncertainty and will not be further discussed.[5] 
 

  Consumption of NaOH up to the equivalence point (VEQ)
The sources of uncertainty for the consumption of NaOH up to the equivalence point can be divided into two 
groups. 

The first group comprises the influence factors that have to do with the volumetric addition of the NaOH solution. 
It includes the calibration of the piston burette, the repeatability of the delivered volume and the influence of the 
difference between the temperature in the laboratory and the temperature at which the piston burette was cali-
brated. 

The second group has to do with the possibility of a systematic difference or bias in the determination of the 
equivalence point by the titrator and its repeatability.
 

  Combining the individual repeatability contributions
Finally, the cause and effect diagram is examined to identify influence factors that can be combined to a new 
source of uncertainty. In this example, there are only the repeatability contributions of the different parameters. The 
contributions are combined to one repeatability contribution for the overall titration and entered as a new main 
branch in the diagram (Fig. 4).
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Figure 4: Cause and effect diagram after combining all the repeatability contributions to the 
variation of the overall titration procedure.
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In step 3 of the calculation of the measurement uncertainty, each individual source of uncertainty entered in the 
cause and error diagram is quantified and converted to a standard deviation.  

  Repeatability of titration (rep)
The contribution for the repeatability of the titration is usually examined in detail when the analytical procedure is 
developed and is determined when the procedure is validated. In this example, it amounts to 0.12%.
rep = 0.12% 

  Purity of the KHP standard (pKHP)
The supplier of the KHP quotes the purity of the standard after drying as 100% ± 0.1%. Since no further details 
are given by the supplier, the purity distribution is best described by a rectangular distribution. The standard 
deviation is given by:

u(pKHP) = 0.1% / √3 
= 0.058%
 

  Sample mass of the KHP standard (mKHP)
The calibration certificate of the XP205DR analytical balance used in these experiments quotes a linearity of  
0.15 mg over the entire weighing range. This source of uncertainty is best modeled using a rectangular 
distribution function. The standard uncertainty contribution for the sample mass of the KHP is made up of the 
standard deviations for the linearity of the two weighing operations, one for the empty beaker (tare) and one  
for the beaker plus the standard (gross).

 
 

u(mKHP) = √(0.15 mg / √3)2 + (0.15 mg / √3)2

= 0.012 mg

Consumption of NaOH up to the equivalence point (VEQ)
The uncertainty of the consumption of NaOH is made up of the following contributions:

 
 
  a) Calibration

The limits of accuracy for a delivered volume of water from a 20-mL burette is ±0.04 mL over the entire working 
range. Since the accuracy of piston burettes is continuously monitored in production, a triangular distribution is 
recommended.
The standard deviation is then calculated as follows: 

u(VEQCal
) = 0.04 mL / √6 

= 0.016 mL
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  b) Temperature
The international standard is to quote the calibration of volume measuring equipment at 20 °C. Since the 
temperature in the laboratory is usually not 20 °C when titration is performed, the uncertainty due to difference  
in temperature between that in the laboratory and the calibration temperature must be taken into account.  
The formula only takes the volume expansion of the liquid (aqueous solution) into account because this is much 
greater than the expansion of solids:

 
 

u(VEQTemp) = 19 mL · 2.1 · 10-4 ˚C-1 · 3 ̊C / √3

= 0.007 mL

   
  c) Bias 

The titration is performed in the beaker under a layer of a protective gas such as argon in order to exclude any 
bias due to the absorption of CO2 by solutions. The principle here is that it is better to prevent bias rather than to 
correct for a bias.

In addition, quality assurance measures such as regular maintenance and the checking of pH sensors ensure 
that the titration is performed according to the criteria specified in the validation and hence without bias. 

Finally, the two standard uncertainties for the calibration and the temperature difference are combined according 
to the principles of uncertainty propagation.

u(VEQ) = √u(VEQCal)2 + u(VEQTemp)2 = √(0.016 mL)2 + (0.007 mL)2 

= 0.017 mL
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U (cNaOH) = k · uc  

U (cNaOH) = 2 · 1.664 · 10-4 mol/L  

= 3.29 · 10-4  mol/L

U (cNaOH) = k · Uc  

U (cNaOH) = 2 · 1.664 · 10-4 mol/L  

= 3.29 · 10-4  mol/L
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2.4  Step 4 – Calculating Measurement Uncertainty

Table 1: The parameters of the equation of the measurand.

Combined uncertainty
 
Formula:

Expanded uncertainty 
Valid for confidence interval of 95.5 %:

Parameter Description Value u(x) u(x)/x

rep Repeatability 1.0 0.12% 0.0012

pKHP Purity KHP 100.0% 0.058% 0.00058

mKHP Sample mass KHP 0.3888 g 0.000012 g 0.000031

MKHP Molar mass KHP 204.2212  
g/mol

0.0038  
g/mol

0.000019

VEQ Consumption NaOH 18.64 mL 0.017 mL 0.00091
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   u(pKHP)  2  +
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Figure 5: Percentage contributions of the individual parameters of the equation  
of the measurand to the combined measurement uncertainty.

Result:

Formula:

Result:

For the final calculation of the mea-
surement uncertainty, it is advis-
able to first summarize the different 
parameters of the equation of the 
measurand in a table (Table 1):

The concentration of NaOH (mea-
surand) is calculated using the 
values from the table:

cNaOH = 10 · pKHP · mKHP / MKHP · VEQ 

= 10 · 100 ·  0.3888 / 204.2122· 18.64 

= 0.10214 mol/L

 
The combined uncertainty for this 
value is then calculated using the 
principles of uncertainty propaga-
tion (see Formula 1). The percent-
age contributions of the different 
parameters of the equation of the 
measurand to the combined uncer-
tainty are shown in Figure 5. The 
diagram also shows which con-
tributions are greatest and hence 
indicates where the titration proce-
dure could be improved.

To compare the result of a titration 
with another result or to check the 
compliance against a limit, the ex-
panded measurement uncertainty is 
usually calculated in addition to the 
combined standard uncertainty. 

This is done by multiplying the 
combined uncertainty by a cover-
age factor of 2 (k=2), in which 
case the confidence interval [6] is 
then 95.5 % . 

uc (cNaOH) = cNaOH · 1.61 · 10-3 

= 0.10214 mol/L · 1.61 · 10-3

= 1.644 · 10-4 mol/L

U (cNaOH) = k · 1.675 · 10-4 mol/L

= 3.35 · 10-4 mol/L

Reutemann-1
Cross-Out
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Figure 8: Example of a modern  
autotitrator with color touch screen,  
3 burettes for titration and dispensing,  
overhead propeller stirrer and  
electrode: Titration Excellence T70

Figure 6: Cause and effect diagram of acidity determination in vinegar

Figure 7: Acidity determination in vinegar: Assessment of all uncertainty factors
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3.   Conclusions

To evaluate the titration results, the measurement uncertainty and thus the confidence interval must be known. 
Only when this information is available can one decide whether the titration results obtained in another labora-
tory for the same samples lead to the same conclusions. 

  Evaluating the titration results
For this reason, calculation of measurement uncertainty is of the utmost importance in many widely different 
fields of analytical chemistry ranging from production control to forensic investigations:
• Laboratories in the food and beverage industry
• Laboratories in pharmaceutical chemistry
• Medical analytical laboratories
• Forensic laboratories
• Laboratories for doping analysis
• and many others

Furthermore, laboratories that are 
accredited according to ISO/IEC/
EN/DIN 17025 (2005) must be 
able to estimate measurement 
uncertainties for all their analytical 
procedures.

This introductory example of a titra-
tion illustrates how the measure-
ment uncertainty of a titration result 
is estimated. It serves as a simple 
introduction and by no means 
covers this extremely wide and dy-
namic topic. The aim was rather to 
present some basic concepts and 
explain important points using a 
practical titration procedure as an 
example. For this reason, the article 
makes no reference to important 
matters such as the influence of 
sampling or sample preparation, 
nor does it mention more complex 
titration methods such as back 
titration. 
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Figure 9: The measurement uncertainty enables one to evaluate the titration results. Result 
A is clearly below and Result D clearly above the limit. Results B and C are unclear and 
require individual evaluation.
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4.   Further Information

Access more knowhow and information on www.mt.com

 
Application Database
We offer comprehensive application support. For titration, the application chemists of the METTLER TOLEDO  
Analytical Chemistry market support group have prepared more than 500 of ready-made titration applications 
for use with the wide range of METTLER TOLEDO titrators. 
 
Applications are also available for other analytical methods. These proven and well-tested applications will help 
you to get accurate results quickly. Our online search engines allow you to search through the database.

Titration applications                  www.mt.com/titration_applications
Thermal analysis applications     www.mt.com/ta-applications

On-demand Webinar
Our web-based seminars (webinars) give you the opportunity to receive specific and relevant information  
concerning applications, measurement technologies and our products. Live webinars offer the added benefit of 
allowing you to ask questions and discuss points of interest with METTLER TOLEDO specialists and other partici-
pants.
 
Find webinars here    www.mt.com/webinars

Lab Library
Take a look at our Lab Library — a one-stop portal to access knowledge resources such as webinars, guides, 
tips and tricks, applications, product catalogs and more. 
 
Go to     www.mt.com/lab-library 
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The five steps of all Good Measuring Practices guidelines start with an evaluation 
of the measuring needs of your processes and their associated risks. 
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equipment and devices.
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