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PREFACE

Measurement uncertainty is the doubt that exists about a measurement’s result. Every
measurement - even the most careful - always has a margin of doubt. Evaluating the uncertainty
in the measurement process determines the “goodness” of a measurement.

This Handbook provides tools for estimating the quality of measurements. Measurement
uncertainty is an estimation of the potential error in a measurement result that is caused by
variability in the equipment, the processes, the environment, and other sources. Every element
within a measurement process contributes errors to the measurement result, including
characteristics of the item being tested. Evaluation of the measurement uncertainty characterizes
what is reasonable to believe about a measurement result based on knowledge of the
measurement process. It is through this process that credible data can be provided to those
responsible for making decisions based on the measurements.

In this context, it becomes apparent the more critical the application, the greater the need for
measurement quality assurance. Measurement uncertainty analysis can be used to mitigate risks
associated with noncompliance of specifications and/or requirements which are validated
through measurement. Although the tools are available, often the overall uncertainty
encountered during the measurement process is not assessed, controlled, or even fully
understood. The principles and methods recommended in this Handbook may be used as the
fundamental building blocks for a quality measurement program. From this foundation, good
measurement data can support better decisions.

Ensuring reliable and accurate products and services justifies a measurement assurance program
as a cost benefit - providing the assurance of safety through measurement quality makes it
imperative.

A lack of standardization for quantified measurement uncertainty estimation often causes
disagreements and confusion in trade, scientific findings, and legal issues. The principles and
methods contained in this Handbook are based, and in some instances, expand on the
International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in
Measurement (GUM), the international standardized approach to estimating uncertainty.
ANSI/NCSL 7540.2-1997 (R2007), U.S. Guide to the Expression of Uncertainty in
Measurement (U.S. Guide), is the U.S. adoption of the ISO GUM. Additional guidance on
estimating measurement uncertainty is available in many engineering discipline-specific
voluntary consensus standards and complimentary documents. However, for consistent results, it
is imperative that the quantification of measurement uncertainty be based on the ISO GUM.
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EXECUTIVE SUMMARY

Measurements are an important aspect of decision making, communicating technical
information, establishing scientific facts, monitoring manufacturing processes and maintaining
human and environmental health and safety. Consequently, industries and governments spend
billions of dollars annually to acquire, install and maintain measurement and test equipment
(MTE).

The more critical the application, the greater the need for measurement quality assurance. MTE
accuracy is a key aspect of measurement quality. However, the overall uncertainty encountered
during the measurement process is not often assessed and controlled.

The assessment and control of measurement uncertainty presupposes the ability to develop
reliable uncertainty estimates. This document provides an in-depth coverage of key aspects of
measurement uncertainty analysis and detailed procedures needed for developing such estimates.

Chapter 1 presents the purpose and scope of this document and discusses principal differences
between “classical” engineering methods and more recent methods developed to provide an
international consensus for the expression of uncertainty in measurement.

Chapters 2 and 3 provide foundational concepts and methods for estimating measurement
uncertainty. Key concepts and methods are summarized below. Chapter 4 discusses how
manufacturer specifications are obtained, interpreted and applied in uncertainty estimation.

Chapters 5 through 7 present procedures for implementing key concepts and methods, using
detailed direct measurement, multivariate measurement and measurement system examples.
Chapter 8 provides guidance and illustrative examples for estimating the uncertainty in the
measurement result obtained from four common calibration scenarios. Chapter 9 presents an
advanced topic for estimating uncertainty growth over time.

Appendix A provides definitions for terms employed throughout this document. The terms and
definitions are designed to be understood across a broad technology base. Where appropriate,
terms and definitions have been taken from internationally recognized standards and guidelines.

Appendices B through D provide in-depth development of concepts and methods described in
Chapters 2 and 3. Appendix E provides an advance topic on applying Bayesian analysis to
estimate unit-under-test (UUT) and MTE attribute biases and in-tolerance probabilities during
calibration. Appendices F through I provide additional analysis examples.

Key Uncertainty Analysis Concepts and Methods

Measurement Error and Uncertainty

A measurement is a process whereby the value of a quantity is estimated. All measurements are
accompanied by error. Our lack of knowledge about the sign and magnitude of measurement
error is called measurement uncertainty. Measurement errors are random variables that follow
probability distributions. A measurement uncertainty estimate is the characterization of what we
know statistically about the measurement error. Therefore, a measurement result is only
complete when accompanied by a statement of the uncertainty in that estimate.
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Uncertainty Analysis

Uncertainty is calculated to support decisions based on measurements. Therefore, uncertainty
estimates should realistically reflect the measurement process. In this regard, the person tasked
with conducting an uncertainty analysis must be knowledgeable about the measurement process
under investigation.

To facilitate this endeavor, the measurement process should be described in writing. Such
documentation should clearly specify the measurement equipment used, the environmental
conditions during measurement, and the procedure used to obtain the measurement.

The general uncertainty analysis procedure consists of the following steps:

Define the Measurement Process

Identify the Error Sources and Distributions
Estimate Uncertainties

Combine Uncertainties

A S e

Report the Analysis Results

The first step in any uncertainty analysis is to identify the physical quantity whose value is
estimated via measurement. This quantity, sometimes referred to as the “measurand,” may be a
directly measured value or indirectly determined through the measurement of other variables. It
is also important to describe the test setup, environmental conditions, technical information about
the instruments, reference standards, or other equipment used and the procedure for obtaining the
measurement(s). This measurement process information is used to identify potential sources of
error.

Measurement process errors are the basic elements of uncertainty analysis. Once these
fundamental error sources have been identified, then the appropriate distributions are selected to
characterize the statistical nature of the measurement errors.

With a basic understanding of error distributions and their statistics, we can estimate
uncertainties. The spread in an error distribution is quantified by the distribution’s standard
deviation, which is the square root of the distribution variance. Measurement uncertainty is
equal to the standard deviation of the error distribution. There are two approaches to estimating
measurement uncertainty. Type A estimates involve data sampling and analysis. Type B
estimates use technical knowledge or recollected experience of measurement processes.

Because uncertainty is equal to the square root of the distribution variance, uncertainties from
different error sources can be combined by applying the “variance addition rule.” Variance
addition provides a method for correctly combining uncertainties that accounts for correlations
between error sources. When uncertainties are combined, it is also important to estimate the
degrees of freedom for the combined uncertainty. Generally speaking, degrees of freedom
signify the amount of information or knowledge that went into an uncertainty estimate.

Reporting Uncertainty

When reporting the results of an uncertainty analysis, the following information should be
included:
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1. The estimated value of the quantity of interest and its combined uncertainty and
degrees of freedom.

2. The mathematical relationship between the quantity of interest and the measured
components (applies to multivariate measurements).

3. The value of each measurement component and its combined uncertainty and
degrees of freedom.

4. A list of the measurement process uncertainties and associated degrees of freedom
for each component, along with a description of how they were estimated.

5. A list of applicable correlation coefficients, including any cross-correlations
between component uncertainties.

It is also a good practice to provide a brief description of the measurement process, including the
procedures and instrumentation used, and additional data, tables and plots that help clarify the
analysis results.
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CHAPTER 1: INTRODUCTION

Concepts and methods presented in this document are consistent with those found in the
International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in
Measurement (GUM).!

Uncertainty is calculated to support decisions based on measurements. Therefore, uncertainty
estimates should realistically reflect the measurement process. In this regard, the person tasked
with conducting an uncertainty analysis must be knowledgeable about the measurement process
under investigation.

Note: In this document, the terms standard uncertainty and uncertainty are used
interchangeably.

To facilitate this endeavor, the measurement process should be described in writing. This write-
up should clearly specify the measurement equipment used, the environmental conditions during
measurement, and the procedure used to obtain the measurement.

11 Purpose

While the GUM provides general rules for analyzing and communicating measurement
uncertainty, it does not provide detailed procedures or instructions for evaluating specific
measurement processes.” In addition, new methods have been developed over the past several
years that enhance the methodology of the GUM.

This document provides a recommended practice that clearly explains key concepts and
principles for estimating and reporting measurement uncertainty. This document also includes
advanced methods that extend the GUM’s guidance on estimating measurement uncertainty.

1.2 Scope

The analysis methods outlined in this document provide a comprehensive approach to estimating
measurement uncertainty. Basic guidelines are presented for estimating the uncertainty in the
value of a quantity for the following measurement alternatives:

e Direct Measurements — The value of a quantity is obtained directly by
measurement and not determined indirectly by computing its value from the
values of other variables or quantities.

e Multivariate Measurements — The value of the quantity is based on measurements
of more than one attribute or quantity.

e Measurement Systems — The value of a quantity is measured with a system
comprised of component modules arranged in series.

The structured, step-by-step uncertainty analysis procedures described herein address the
important aspects of identifying measurement process errors and using appropriate error models
and error distributions. Advanced topics cover estimating degrees of freedom for Type B

! Throughout this document, the term GUM refers to ISO Guide to the Expression of Uncertainty in Measurement and
ANSI/NCSL Z540-2-1997, the U.S. Guide to the Expression of Uncertainty in Measurement.

2 See section 1.4 of the GUM.



uncertainties, uncertainty analysis for alternative calibration scenarios, uncertainty growth over
time and Bayesian analysis.

Examples contained in the main body of this document provide detailed step-by-step analysis
procedures that re-enforce important principles and methods. Analysis examples included in the
appendices address real-world measurement scenarios and follow a standardized format to
clearly convey the necessary information and concepts used in each analysis.

1.3  Background

The GUM was developed to provide an international consensus for the expression of uncertainty
in measurements. This entailed the development of an unambiguous definition of measurement
uncertainty and the application of rigorous mathematical methods for uncertainty estimation.

Over the past twenty years or so, various uncertainty analysis standards, guides and books have
been published by engineering organizations. Examples of uncertainty analysis standards and
other published material commonly used in the U.S. engineering community are listed below.

o Test Uncertainty, ASME PTC 19.1-1998 (reaffirmed 2004).

o Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME
MFC-2M-1983 (reaffirmed 2001).

o Assessment of Wind Tunnel Data Uncertainty, AIAA Standard S-071-1995.

« Dieck, R.H.: Measurement Uncertainty Methods and Applications, 3™ Edition,
ISA 2002.

e Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for
Engineers, 2" Edition, John Wiley & Sons, 1999.

Although many of these uncertainty analysis references have been updated or reaffirmed in
recent years, the methods they espouse are distinctly different from those presented in the GUM.
Consequently, confusion persists in the reporting and comparison of uncertainty estimates across
technical organizations and disciplines.

The methods and concepts presented in this document follow the GUM and are based on the
properties of measurement error and the statistical nature of measurement uncertainty.
Publications consistent with the GUM are listed in the references section of this document.

Key differences are summarized in Table 1-1 to illustrate how the methods and concepts
presented in this document supplant pre-GUM techniques. The methods and concepts presented
in this document are intended to provide necessary clarification about the topics introduced thus
far, as well as other uncertainty analysis issues.

1.4 Application

The established best practices, procedures and illustrative examples contained in this document
provide a comprehensive resource for all technical personnel responsible for estimating and
reporting measurement uncertainty.



Table 1-1. Comparison of Pre-GUM and GUM Methodologies

Topic Pre-GUM GUM
Measurement | Measurement errors are categorized as either random or The GUM refers only to errors that can occur in a given
Error systematic.” In this context, random error is defined as the measurement process and does not differentiate them as random or
portion of the total measurement error that varies in the short- | systematic. Measurement process errors can include repeatability,
term when the measurement is repeated. Systematic error is | operator bias, instrument parameter bias, resolution error, errors
defined as the portion of the total measurement error that arising from environmental conditions, or other sources.
remains constant in repeat measurements of a quantity.
Additionally, each measurement error, regardless of its origin, is
considered to be a random variable that can be characterized by a
probability distribution.
Measurement | Many pre-GUM references propose that the uncertainty due The GUM supplants systematic and random uncertainties with
Uncertainty to random error be computed by multiplying the standard standard uncertainty,” which is a statistical quantity equivalent to

deviation of a sample of measured values by the Student’s t-
statistic* with 95% confidence level, tos, .

Uy =los, Sy or Uy =los Sx.

The standard deviation, Sy, of a sample of data is

where n is the sample size, X is the kth measured value, X is

the sample mean value and v is the degrees of freedom, equal
ton-1.

the standard deviation of the error distribution.

By definition, the standard deviation is the square-root of the
distribution variance.® Therefore, the uncertainty, Uy, in a
measurement, X = Xyye T &y, 18

u, = \/V21r(x) = \/Vﬂr(xtrue +&y)

= \/var(g,).

In the above equation, X is the measured value, X is the unknown
true value of the measurand at the time of measurement, & is the

measurement error and var(+) is the variance operator.

In this regard, uncertainty is not considered to be a + limit or
interval. The standard uncertainty of a measurement error is
determined from Type A or Type B estimates.

3 In the pre-GUM context, the terms random and precision are often used interchangeably, as are the terms systematic and bias.

4 The Student’s t-statistic and confidence level are discussed further in section 2.6.1.

3 In this document, the terms standard uncertainty and uncertainty are used interchangeably.

% A mathematical definition of the distribution variance is presented in section 2.4.




Topic Pre-GUM GUM
Measurement | These uncertainties, often expressed by the symbol Ugs, are Type A uncertainty estimates are obtained by the statistical
Uncertainty more reflective of confidence limits or expanded analysis of a sample of measurements. Type B uncertainty
(continued) uncertainties.’ estimates are obtained by heuristic means such as past experience,
manufacturer specifications, or other information.
Pre-GUM references also state that the uncertainty due to
systematic error or bias is expressed as
Upias = B

where B is based on past experience, manufacturer

specifications, or other information. This uncertainty is also

more reflective of confidence limits or an expanded

uncertainty.
Combined Combining random and systematic uncertainties has been a Since elemental uncertainties are equal to the square-root of the
Uncertainty major issue, often subject to heated debate. The view distribution variance, the variance addition rule is used to combine

supported by many data analysts and engineers was to simply
add the uncertainties linearly (ADD).

Sx
Uapp = B +1gs \/—
n

The view supported by statisticians and measurement science
professionals was to combine them in root sum square (RSS).

2
) s
Ugpss =4/B +('[95 T);J

A compromise was eventually proposed”® in which either
method could be used as long as the following constraints
were met:

uncertainties from different error sources.
To illustrate the variance addition rule, consider the measurement
of a quantity X that involves two error sources & and &,.

X= Xyeet &1 7 &

The uncertainty in X is obtained from

U, = \/V3r(xtrue +te +&) = \/V3r(£l +&)

= \/V3r(51) + var(g,) + 2cov(g, &)

where the covariance term, cov(g, &), is the expected value of the
product of the deviations of & and & from their respective means.
The covariance of two independent variables is zero. The
covariance can be replaced with

7 Confidence limits and expanded uncertainty are also discussed in section 2.6.1.

§ Abernathy, R. B. and Ringhauser, B.: "The History and Statistical Development of the New ASME-SAE-AIAA-ISO Measurement Uncertainty Methodology,"
AIAA/SAE/ASME/ASEE Propulsion Conference, 1985.
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Topic Pre-GUM GUM
Combined
Uncertainty a. The elemental random uncertainties and the Pr Uy = cov(e, &)
continued elemental systematic uncertainties are . . .
( ) . Y where p , is the correlation coefficient for & and & and
combined separately. ’
b. The total. random qncertainty and total u, = +/var(g) U, = /var(e,) .
systematic uncertainty be reported separately.
c. The method used to combine the total random Therefore, the uncertainty in X can be expressed as
and total systematic uncertainties are stated. 2
Ironically, it was also recommended that the RSS method be Si lati ffici ; ) |
used to combine the elemental random uncertainties, S;, and hl,nce corre gtlon coe q icients range roin rmrtllus one tcl)lp Us one,
the elemental systematic uncertainties, B;. this expression provides a more general, mathematically rigorous
method for combining uncertainties.
ITK 1/2 K 172 . | N .
S= H _Z Si B= _Z B; For example, if p;, = 0 (i.e., statistically independent errors), then
=l =1 the uncertainties are combined using RSS. If p;, = 1, then the
After publication of the GUM, most uncertainty analysis uncertainties are added. If p;, = -1, then the uncertainties are
references state that the total random and total systematic subtracted.
uncertainties also be combined in RSS. In many instances,
the Student’s t-statistic, tos, is set equal to 2 and Ugss is
computed to be
Unfortunately, this consensus approach does not eliminate
the problems associated with using expanded uncertainties or
multiples of standard deviations.
Degrees of Prior to the GUM, there was no way to estimate the degrees Equation G.3 of the GUM
Freedom of freedom for uncertainties due to systematic error.

Consequently, there was no way to compute the degrees of
freedom for the combined uncertainty.

1 u?(x) ~1[Au(x)}_2

2 6? [u)] “ 2 u




Topic

Pre-GUM

GUM

Degrees of
Freedom
(continued)

provides a relationship for computing the degrees of freedom for a
Type B uncertainty estimate where o°[u(X)] is the variance in the
uncertainty estimate, U(X), and Au(X) is the uncertainty in the
uncertainty estimate.’

Since publication of the GUM, a methodology for determining
o°[u(x)] and computing the degrees of freedom for Type B
estimates has been developed.'

When uncertainties are combined, it is important to estimate the
degrees of freedom for the total uncertainty. The GUM utilizes the
Welch-Satterthwaite formula to estimate the effective degrees of
freedom, 14, for the combined uncertainty.

In the above equation, U; and 1 are the uncertainties and associated
degrees of freedom for n error sources, a; are sensitivity
coefficients and the combined or total uncertainty Ur~ is computed
assuming no error source correlations.

n

2.2

UT* = | a; u;
Vi=1

Confidence
Limits

In pre-GUM references, Uys is employed as an equivalent

95% confidence limit

X —Ugs < true value < X +Uys

The combined or total uncertainty, Uy, and degrees of freedom, v,
can be used to establish the upper and lower limits that contain the
true value (estimated by the mean value X ), with some specified
confidence level, p. Confidence limits are expressed as

% This equation assumes that the underlying error distribution is normal.

10 Castrup, H.: “Estimating Category B Degrees of Freedom,” presented at the 2000 Measurement Science Conference, January 21, 2001. See also Appendix D.
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Topic

Pre-GUM

GUM

Confidence
Limits
(continued)

where

2
S

Ugs = Bz+(t —]
95 95\/5

X =ty o, Ur Struevalue <X +t,,,, Uy
where o = 1- p and the t-statistic, 1, e, 1S @ function of both the

degrees of freedom and the confidence level.

The GUM introduces an expanded uncertainty, ku, as an
approximate confidence limit, in which a coverage factor
k is used.

X —ku; < true value < X + ku;

In most cases, a value of k=2 is used to approximate a 95%
confidence level for normally distributed errors.

To be useful in managing errors, the coverage factor should be
based on both a confidence level and the degrees of freedom for
the uncertainty estimate. This is achieved with the Student’s t-
statistic, tyn,,-

Confidence limits and expanded uncertainty are discussed further
in section 2.6.1.




CHAPTER 2: BASIC CONCEPTS AND METHODS

A measurement is a process whereby the value of a quantity is estimated. All measurements are
accompanied by error.'" Our lack of knowledge about the sign and magnitude of measurement
error is called measurement uncertainty. A measurement uncertainty estimate is the
characterization of what we know statistically about the measurement error. Therefore, a
measurement result is only complete when accompanied by a statement of the uncertainty in that
result.

This chapter describes the basic concepts and methods used to estimate measurement
uncertainty.'> The general uncertainty analysis procedure consists of the following steps:

Define the Measurement Process

Develop the Error Model

Identify the Error Sources and Distributions
Estimate Uncertainties

Combine Uncertainties

Report the Analysis Results

IR e

The following sections discuss these analysis steps and clarify the relationship between
measurement error and uncertainty. A discussion on using uncertainty estimates to compute
confidence intervals and expanded uncertainties is also included.

2.1 Define the Measurement Process

The first step in any uncertainty analysis is to identify the physical quantity that is measured.
This quantity, sometimes referred to as the “measurand,” may be a directly measured value or
derived from the measurement of other quantities. The former type of measurements are called
“direct measurements,” while the latter are called “multivariate measurements.”

For multivariate measurements, it is important to develop an equation that defines the
mathematical relationship between the derived quantity of interest and the measured quantities.
For a case involving three measured quantities X, Yy, and z, this equation can be written

q= f(X’y’Z) (2_1)
where

q = quantity of interest
f = mathematical function that relates q to measured quantities X, y, and z.

At this initial stage of the analysis, it is also important to describe the test setup, environmental
conditions, technical information about the instruments, reference standards, or other equipment
used and the procedure for obtaining the measurement(s). This information will be used to
identify measurement process errors and estimate uncertainties.

" The relationship between a measured quantity and measurement error is defined in section 2.2.

2 The methodology of the GUM is employed throughout this document. The same applies to specific procedures and techniques
unless otherwise indicated.



2.2  Develop the Error Model

An error model is an algebraic expression that defines the total error in the value of a quantity in
terms of all relevant measurement process or component errors. The error model for the quantity
g defined in equation (2-1) is

£q = Cy&x +Cyéy +C,8; (2-2)
where
& = errorin(
& = error in the measured quantity X

g = error in the measured quantity Yy
& = error in the measured quantity z

and Cy, Cy and C; are sensitivity coefficients that determine the relative contribution of the errors
in X, y and Z to the total error in . The sensitivity coefficients are defined below."

(gl
ox) Y oy oz

In any given measurement scenario, each measured quantity is also accompanied by
measurement error. The basic relationship between the measured quantity X and the
measurement error & is given in equation (2-3).

X = Xgue & (2'3)

The error model for & is the sum of the errors encountered during the measurement process and
is expressed as

& = ateot -+ (2-4)
where the numbered subscripts signify the different measurement process errors.

2.3 Identify Measurement Errors and Distributions

Measurement process errors are the basic elements of uncertainty analysis. Once these
fundamental error sources have been identified, then uncertainty estimates for these errors can be
developed.

The errors most often encountered in making measurements include, but are not limited to the
following:

o Reference Attribute Bias

o Repeatability

e Resolution Error

e Operator Bias

e Environmental Factors Error
o Computation Error

13 Detailed analysis procedures for multivariate measurements are presented in Chapter 6.
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Reference Attribute Bias

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test
(UUT) attributes by comparison to corresponding measurement reference attributes. The error in
the value of a reference attribute, at any instant in time, is composed of a systematic component
and a random component. Reference attribute bias is the systematic error component that
persists from measurement to measurement during a measurement session.'* Attribute bias
excludes resolution error, random error, operator bias and other error sources that are not
properties of the attribute.

Repeatabilit

Repeatability is a random error that manifests itself as differences in measured value from
measurement to measurement during a measurement session. It is important to note that, random
variations in a measured quantity or UUT attribute are not separable from random variations in
the reference attribute or random variations due to other error sources.

Resolution Error

Reference attributes and/or UUT attributes may provide indications of sensed or stimulated
values with some finite precision. The smallest discernible value indicated in a measurement
comprises the resolution of the measurement. For example, a voltmeter may indicate values to
four, five or six significant digits. A tape measure may provide length indications in meters,
centimeters or millimeters. A scale may indicate weight in terms of kg, g, mg or pg.

The basic error model for resolution error, &, 1S

&res = Xindicated — Xsensed

where Xsensed 18 @ “measured” value detected by a sensor or provided by a stimulus and Xingicated 1S
the indicated representation of Xsensed.

Operator Bias

Errors can be introduced by the person or operator making the measurement. Because of the
potential for human operators to acquire measurement information from an individual
perspective or to produce a systematic bias in a measurement result, it sometimes happens that
two operators observing the same measurement result will systematically perceive or produce
different measured values.

In reality, operator bias has a somewhat random character due to inconsistencies in human
behavior and response. The random contribution is included in measurement repeatability and

the systematic contribution is the operator bias.

Environmental Factors Error

Errors can result from variations in environmental conditions, such as temperature, vibration,
humidity or stray emf. Additional errors are introduced when measurement results are corrected
for environmental conditions. For example, when correcting a length measurement for thermal

4 A measurement session is considered to be an activity in which a measurement or sample of measurements is taken under fixed
conditions, usually for a period of time measured in seconds, minutes or, at most, hours.
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expansion, the error in the temperature measurement will introduce an error in the length
correction. The uncertainty in the correction error is a function of the uncertainty in the error in
the environmental factor."

Computation Error

Data processing errors result from computation round-off or truncation, numerical interpolation
of tabulated values, or the use of curve fit equations. For example, in the regression analysis of a
range of values, the standard error of estimate quantifies the difference between the measured
values and the values estimated from the regression equation.'®

A regression analysis that has a small standard error of estimate has data points that are very
close to the regression line. Conversely, a large standard error of estimate results when data
points are widely dispersed around the regression line. However, if another sample of data were
collected, then a different regression line would result. The standard error of the forecast
accounts for the dispersion of various regression lines that would be generated from multiple
sample sets around the true population regression line. The standard error of forecast is a
function of the standard error of estimate and the measured value and should be used when
estimating uncertainty due to regression error.

Repeatability and Resolution Error

In some measurement situations, repeatability may be considered to be a manifestation of
resolution error. The following cases should be considered when determining whether or not to
include repeatability and resolution as separate error sources.

Case 1 — Values obtained in a random sample of measurements exhibit just two values and the
difference between these values is equal to the smallest increment of resolution. In this case, it
can be concluded that “background noise” random variations are occurring that are beyond the
resolution of the measurement. Consequently, repeatability cannot be identified as a separate
error source because the apparent random variations are due to resolution error. Accordingly, the
uncertainty due to resolution error should be included in the total measurement uncertainty but
the uncertainty due to repeatability should not be included.

Case 2 — Values obtained in a random sample vary in magnitude substantially greater than the
smallest increment of resolution. In this case, repeatability cannot be ignored as an error source.
In addition, since each sampled value is subject to resolution error, it should also be included.
Accordingly, the total measurement uncertainty must include contributions from both
repeatability uncertainty and resolution uncertainty.

Case 3 — Values obtained in a random sample of measurements vary in magnitude somewhat
greater than the smallest increment of resolution but not substantially greater. In this case, error
due to repeatability is partly separable from resolution error, but it becomes a matter of opinion
as to whether to include repeatability and resolution error in the total measurement error. Until a
clear solution to the problem is found, it is best to include both repeatability and resolution error.

In summary, if measurement repeatability is smaller than the display resolution, only resolution

'3 In the length correction scenario, error in the coefficient of thermal expansion may also need to be taken into account.
'® Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984.
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error should be included in the uncertainty analysis. If measurement repeatability is larger than
the display resolution, then both error sources should be included in the uncertainty analysis.

2.3.1 Error Distributions

Recall from the GUM methodology discussed in Chapter 1, that measurement uncertainty is the
square root of the variance of the error distribution.'” To better understand the relationship
between measurement error and measurement uncertainty, measurement error distributions must
be discussed in some detail.

An important aspect of the uncertainty analysis process is the fact that measurement errors can
be characterized by probability distributions. This is stated in Axiom 1.

Axiom 1 - Measurement errors are random variables that follow
probability distributions.

The probability distribution for a type of measurement error is a mathematical description that
relates the frequency of occurrence of values to the values themselves. Error distributions
include, but are not limited to normal, lognormal, uniform (rectangular), triangular, quadratic,
cosine, exponential, U-shaped and trapezoidal.

Each distribution is characterized by a set of statistics. The statistics most often used in
uncertainty analysis are the mean or mode and the standard deviation. With the lognormal
distribution, a limiting value and the median value are also used. Probability distributions used
in measurement applications are described in Appendix B. Probability density functions for
selected distributions are summarized in Table 2-1.

Table 2-1. Probability Distributions

Distribution Distribution Plot Probability Density Function

f(e)

f(e)= L g(e) 2o

Normal ro
where o is the standard deviation of the distribution.
&
0
f(e) :
&) —
(el Lm0
2zale —q 242
Lognormal

where Q is a physical limit for & m is the distribution
median, and A is a shape parameter.

' The basis for the mathematical relationship between error and uncertainty is presented in section 2.4.
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Distribution Distribution Plot Probability Density Function
f(e)
i[1—((9/a)2}, —a<e<a
f(e)=1<4a
Quadratic 0, otherwise
where + a are the minimum distribution bounding limits.
0 a
f(e)
1
—|1+cos(ze/a)|, —a<e<a
f(e)= Za[ ( )]
Cosine 0, otherwise
where + a are the minimum distribution bounding limits.
0
f(e)
L —a<se¢e<a
. f(e)=<2a’ T
Uniform 0 herwi
(Rectangular) » otherwise
where + a are the minimum distribution bounding limits.
0
f(e)
(¢+a)/a®, —a<e<0
f(e)={(a-s)/a%, 0<e<a
Triangular 0, otherwise
where + a are the minimum distribution bounding limits.
0
) ! (d+¢g), -d<e<-c
d? +c?
f(e)= ! , —-c<eg<cC
Trapezoidal d+c
0, otherwise
0 . . . . . . . .
where + d are the minimum distribution bounding limits.
f(o)
1 ase¢<a
fe)=17zVa? + &2
U-Shaped 0, otherwise

where + a are the minimum distribution bounding limits.

2.3.2 Choosing the Appropriate Distribution

The normal and lognormal distributions are relevant to most real world measurement
applications. Other distributions are also possible, such as the uniform, triangular, quadratic,
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cosine, exponential, and U-shaped, although they have limited applicability. Some
recommendations for selecting the appropriate distribution for a particular measurement error
source are as follows:

a. The normal distribution should be applied as the default distribution, unless
information to the contrary is available.

b. Apply the lognormal distribution if it is suspected that the distribution of the value
of interest is skewed (i.e., non-symmetric) and bounded on one side."®

c. If 100% containment has been observed and minimum bounding limits are
known, then the following is recommended:

1. Apply the cosine distribution if the value of interest has been subjected to
random usage or handling stress, and is assumed to possess a central tendency.

ii. Apply the quadratic distribution if it is suspected that values are more evenly
distributed.

iii. The triangular distribution may be applicable, under certain circumstances,
when dealing with parameters following testing or calibration. It is also the
distribution of the sum of two uniformly distributed errors with equal means
and bounding limits.

iv. The U-shaped distribution is applicable to quantities controlled by feedback
from sensed values, such as automated environmental control systems.

v. Apply the uniform distribution if the value of interest is the resolution
uncertainty of a digital readout. This distribution is also applicable to
estimating the uncertainty due to quantization error and the uncertainty in RF
phase angle.

More specific criteria for correctly selecting the uniform distribution and example cases that
satisfy this criteria are given in Appendix B.

2.4 Estimate Uncertainties

As previously discussed, an error distribution tells us whether an error or a range of errors is
likely or unlikely to occur. It provides a mathematical description of how likely we are to
experience (measure) certain values. With a basic understanding of error distributions and their
statistics, we can estimate uncertainties.'”” We begin with the statistical quantity called the
variance.

2.4.1 Distribution Variance
Variance is defined as the mean square dispersion of the distribution about its mean value.

'8 In using the normal or lognormal distribution, some effort must be made to estimate a containment probability. This is
discussed in more detail in Chapter 3.

' To ensure validity, the distribution selected to estimate uncertainty for a given error source should provide the most realistic
statistical characteristics.
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var(X) = Mean Square Dispersion in X.

If a variable X follows a probability distribution, described by a probability density function f(X),
then the mean square dispersion or variance of the distribution is given by

var(X) = [ (X — sy )2 f (x)dx (2-5)

where £4 is the mean of X, sometimes referred to as the expectation value for X. In speaking of
variations in X that are the result of measurement error, we take z4 to be the true value of the
quantity being measured. From equation (2-3), we can write & = X — 14, and equation (2-5) can
be expressed as

var(x) = [ &5 f [x(£,)]déey

(2-6)
= var(sy)

where X(&) = &+ 1. Because of the form of this definition, the variance is also referred to as
the mean square error.

Equation (2-6) shows that, if a quantity X is a random variable representing a population of
measurements, then the variance in X is just the variance in the error in X

var(X) = var(Xgpe + &) = var(&). (2-7)

By definition, the standard deviation is the square root of the distribution variance or mean
square error. The uncertainty in a measurement quantity is equivalent to the standard deviation
of the error distribution. This leads to Axiom 2.

Axiom 2 - The uncertainty in a measurement is the square root of
the variance in the measurement error.

Axiom 2 provides the crucial link between measurement error and measurement uncertainty. If X
1s a measured value, then

Uy, =+/var(x)
~ Jvar(z) (2-8)

=U, .

Equation (2-8) provides a third axiom that forms a solid and productive basis upon which
uncertainties can be estimated.

Axiom 3 - The uncertainty in a measured value is equal to the
uncertainty in the measurement error.
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Axiom 3, together with Axioms 1 and 2, allows the computation and combination of
measurement uncertainty to be rigorously carried out by

1. drawing attention to what it is that we are uncertain of in making measurements,
and

2. allowing for the development of measurement uncertainty models for
measurement scenarios of any complexity.

There are two approaches to estimating the variance of an error distribution and, thus, the
uncertainty in the measurement error. Type A estimates involve data sampling and analysis.
Type B estimates use technical knowledge or recollected experience of measurement processes.
The basic methods used to make Type A and Type B uncertainty estimates are presented in
Chapter 3.

25 Combine Uncertainties

Axiom 2 states that the uncertainty in the value of an error is equal to the square root of the
variance of the error distribution. As a consequence, we can apply the variance addition rule to
obtain a method for correctly combining uncertainties from different error sources.

2.5.1 Variance Addition Rule — Direct Measurements

For purposes of illustration, consider a measured quantity X = Xye + & We know that the total
error, &, consists of measurement process errors

k
&= atat - ta = Yg
i=1

where & represents the ith error source and K is the total number of errors.

Applying the variance addition rule to & yields

var(g) = var(e+ &+ -+ &) (2-9)
var(g)) + var(&) + --- + var(&) + 2cov(éer, &) +

2cov(éey, &) + -+ + 2cov(&a, &) + 2cov(é&.1, &)

k k-1 k
2 var(g)+22 X cov(ggj)
i=1

i=1 j=i+l

where cov(g, &) is the covariance between measurement process errors. Covariance is defined
in Section 2.5.3.

2.5.2 The Variance Addition - General Model

Now consider a more general case of the variance addition rule. For illustration, consider a
quantity z defined from the following equation

Z = ax+ by

where X and y are measured quantities and the coefficients a and b are constants. Using equation
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(2_3)3

z = a(Xrue T &) + D(Yirve + &)
= @true bytrue +ag + bccfy
= Zie T &

where

Zirue = @grue t bytrue
and

& = agtbg.
The variance of & is expressed as

var(g) = var(ag + bg)
= a’var(g) + b var(g) + 2ab cov(s, &)

where the last term is the covariance between & and §. From Axiom 2, var(&) is expressed as

var (&, ) = ui

(2-10)
= azugX + bzugy +2abcov(ey, &y)

where u £, and u s, Ar€ the uncertainties in & and &, respectively.

2.5.3 Error Correlations — Direct Measurements

If two variables & and &, are described by a joint probability density function f(&j, &), then the
covariance of g and &, is given by

coviey, &) =7, dg 7 g8, T (8, 6)de,. (2-11)

The covariance of two random variables is a statistical assessment of their mutual dependence.
Because covariances can have inconvenient physical dimensions, they are rarely used explicitly.
Instead, we use the correlation coefficient, Peis; » which is defined as

cov(&j,€j) cov(&j,€j)

B Jvar(gi)var(gj) - Ug Ug,

pgigj (2'12)

where U, and u g are the ith and jth measurement process uncertainties. The correlation

coefficient provides an assessment of the relative mutual dependence of two random variables.
The correlation coefficient is a dimensionless number ranging in value from -1 to 1.

If we recall Axiom 2, equation (2-9) can be expressed as
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k k-1
u; =2 var(g)+2 2 Z Peie;Us Us,
i=1 i=1 j=i+1
2-13
k 2 k-1 ( )
=2Uu & +22 Zpg,ej & 51
i=1 i=1 j=i+l
2.5.4 Cross-Correlations between Error Components
From equations (2-12) and (2-13), the correlation coefficient for & and & is
cov(ey, &
5o, = M (2-14)
Ug, U,
and equation (2-10) becomes
u; =a’u; + bzugy +2abp, , Uy Us - (2-15)
Equation (2-15) can be generalized to cases where there are k measured quantities and
corresponding error components &, &, ..., & for these quantities.
k-1
Var(zagr)— Za var(ep) +2 2 Z aaqug sq
r=1 r=1q=r+1
2-16
k ’ k-1 ( )
= aru +23% Z 8r8gPs, 2, Us, Uz,
r=1 r=1q=r+l1

where U e and u gq ArC the total uncertainties for the rth and gth error components, respectively

and prq 1s the cross-correlation between these error components.

Each error component is comprised of measurement process errors, such as measurement
reference bias, repeatability, resolution error, etc. Hence, we decompose & as

& — Sr’1 + (9r’2 + ...+ gr1| (2'17)
where | denotes the number of measurement process errors.
The cross-correlation coefficient between measurement process errors for the error components

&, and &, 1s denoted by Pe, £0.i and written

COV(&‘r’i ,Eq,j )

g |

Per, (2-18)

eri ugq,J’
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where U, . and u gq A€ the measurement process uncertainties for the rth and gth error

components, respectively, and

Ug . = Jvar(er i) . (2-19)

Returning to equation (2-16), the correlation coefficient for u, and u & is

I m
S X Pey e Uy Ue (2-20)

Pe g, =
T 8rugqlljl a.J

u

where the total number of process uncertainties for the rth and qth measured quantities are | and
m, respectively. As equation (2-20) shows, the correlation coefficient, prgij, accounts for cross-
correlations between measurement process uncertainties for the rth and gth error components.

2.5.,5 Combined Uncertainty

The variance addition rule provides a logical approach for computing the overall, combined
uncertainty that accounts for correlations between error sources. Given equations (2-16) and
(2-20), the total uncertainty, Ur, can be generally expressed as

& 8 &
r=1qg=r+l1 i=1]j Bl o]

k k-1
=\/Zau2 +2Y z aazngrl u (2-21)
r=1
From the above equation, one can surmise that uncertainties are not always combined using the
root sum square (RSS) method.

2.5.6 Establishing Correlations

To assess the impact of correlated errors on the combined uncertainty, consider the measurement
of a quantity X that involves two error sources & and &

X= Xrue t &1+ &.

From Axioms 2 and 3 and the variance addition rule, the uncertainty in X is obtained from

Uy = Jvar(xtrue +&+&) = \/V3r(51 +&)

= \/Ulz + U% + 2,01’2U1U2 .
The correlation coefficient, p; , for two error sources can range in value from -1 to +1.

Statistically Independent Error Sources
. . _ _ 2 2
If the two error sources are statistically independent, then p;, =0 and u, =+/u; +u; .

Therefore, uncertainties of statistically independent error sources are combined using the RSS
method.
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Strongly Correlated Error Sources

/ 2 -
If p1, =1, then u, = \/U12 + u% + 20U, = (ul + uz) =U; +U,. Therefore, the uncertainties are
combined linearly.

When two error sources are strongly correlated and compensate for one another, then

2 .
pi2=-land Uy = \/ulz + u% —2uiUy =4/(U —Uy) = |u1 - u2|. Therefore, the combined
uncertainty is the absolute value of the difference between the individual uncertainties.

There typically aren't any correlations between measurement process errors for a given quantity.
In general, it is safe to assume that there are no correlations between the following measurement
process errors:

o Repeatability and Reference Attribute Bias (0Oran bias = 0)

» Repeatability and Operator Bias (ran,oper = 0)

o Reference Attribute Bias and Resolution Error (pyiasres = 0)

» Reference Attribute Bias and Operator Bias (pyias,oper = 0)

» Operator Bias and Environmental Factors Error (poper.eny = 0)

e Resolution Error and Environmental Factors Error (pres, env = 0)
 Digital Resolution Error and Operator Bias (Ores, oper = 0)

Cross-Correlations

Instances may arise where measurement process errors for different error components are
correlated. In this case, equation (2-20) must be applied to account for cross-correlations
between measurement components. Accounting for cross-correlations is discussed further in
Chapter 6.

2.5.7 Degrees of Freedom

Generally speaking, degrees of freedom signifies the amount of information or knowledge that
went into an uncertainty estimate. Therefore, when uncertainties are combined, we need to know
the degrees of freedom for the total uncertainty. Unfortunately, the degrees of freedom for a
combined uncertainty estimate is not a simple sum of the degrees of freedom for each
uncertainty component.

The effective degrees of freedom, v, for the total uncertainty, ur, resulting from the
combination of uncertainties U; and associated degrees of freedom, w, for n error sources can be
estimated via the Welch-Satterthwaite formula given in equation (2-22)

U-?-*
Veff = Tl (2-22)

i=1 Vj

where Ur= is the total or combined uncertainty computed assuming no error correlations.
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n
Ups = / > a’uf (2-23)
i=1

Note: While the Welch-Satterthwaite formula is applicable for statistically
independent, normally distributed error sources, it can usually be thought of as a
fair approximation in cases where error sources are not statistically independent.

Determining the degrees of freedom for Type A and Type B uncertainty estimates is discussed in
Chapter 3.

2.6 Report the Analysis Results

Reporting the results of an uncertainty analysis is an important aspect of measurement quality
assurance. Therefore, the analysis results must be reported in a way that can be readily
understood and interpreted by others.

Section 7 of the GUM recommends that the following information be included:

1. The estimated value of the quantity of interest (measurand) and its combined
uncertainty and degrees of freedom.

2. The functional relationship between the quantity of interest and the measured
components, along with the sensitivity coefficients.

3. The value of each measurement component and its combined uncertainty and
degrees of freedom

4. A list of the measurement process uncertainties and associated degrees of freedom
for each component, along with a description of how they were estimated.

5. A list of applicable correlation coefficients, including any cross-correlations
between component uncertainties.

It is also a good practice to provide a brief description of the measurement process, including the
procedures and instrumentation used, and additional data, tables and plots that help clarify the
analysis results.

When reporting the uncertainty in a measured value, it is often desirable to include confidence
limits or expanded uncertainty. Therefore, some discussion about confidence limits and
expanded uncertainty is provided in the following section.

2.6.1 Confidence Limits and Expanded Uncertainty

In statistics, we make inferences about population parameters, such as the mean value and
standard deviation, through the analysis of sampled data or other heuristic information.
Confidence limits provide a numerical interval which contains the population parameter of
interest with some probability.” Confidence limits are computed using either the normal or
Student’s t distribution.”'

2 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc., 1984.

2! The Student’s t distribution is a symmetric distribution that approaches the normal distribution as the degrees of freedom
approach infinity.
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In reporting measurement results, the uncertainty, U, and its associated degrees of freedom, v,
can be used to establish confidence limits that contain the true value, x (estimated by a sample
mean value X ), with some specified confidence level or probability, p. In this application, the
confidence limits are expressed as

X —ty US U<+l U (2-24)

al2,v

where the multiplier is the t-statistic, ty»,,, and a = 1- p is the significance level. Values for ty»,,
are obtained from the percentiles of the probability density function for the Student’s t
distribution.

As seen from equation (2-24), the width of the confidence limits or interval is dependent on three
factors:

1. the confidence level
2. the estimated uncertainty
3. the degrees of freedom.

The development and application of confidence limits are discussed further in Chapters 3 and 4.

The GUM defines the term expanded uncertainty as "the quantity defining an interval about the
result of a measurement that may be expected to encompass a large fraction of the distribution of
values that could reasonably be attributed to the measurand."

This means that the expanded uncertainty is basically defined as an interval that is expected to
contain the true value of the measurand. In this context, the expanded uncertainty, Ku, is offered
as approximate confidence limits, in which the coverage factor, Kk, is used in place of the
t-statistic

X —KU < Xipye S X+ KU . (2-25)

The introduction of the expanded uncertainty was meant to clarify the concept of uncertainty, but
confusion over and misapplication of this term persisted since the GUM was first released. To
mitigate this problem, the GUM also introduced the term "standard uncertainty" to help
distinguish uncertainty from expanded uncertainty. However, in practice, the term expanded
uncertainty and uncertainty are often used interchangeably. This, of course, can lead to incorrect
inferences and miscommunications.

Note: The use of the term uncertainty to represent an expanded uncertainty is not
a recommended practice.

The use of coverage factors in lieu of the t-statistic emerged as an artifice to “emulate”

confidence limits in cases where the total uncertainty is a Type B estimate or is composed of
both Type A and Type B estimates.

22



Not being a statistical quantity in the purest sense, a Type B estimate was not considered to be
associated with definable degrees of freedom that could be regarded as quantifying the amount of
information used in producing the estimate. Accordingly, if used alone or combined with a Type
A estimate, the result was not viewed as being a true statistic.

As is shown in Appendix D, we now have the means to estimate the degrees of freedom for
Type B estimates in such a way that they can be considered on an approximately equal statistical
footing with Type A estimates. Consequently, Type B uncertainty estimates can be used to
determine confidence limits, conduct statistical tests, evaluate decisions, etc.
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CHAPTER 3: ESTIMATING UNCERTAINTY

There are two approaches to estimating measurement uncertainty. Type A uncertainty estimates
involve data sampling and analysis. Type B uncertainty estimates use engineering knowledge or
recollected experience of measurement processes. This chapter discusses sample statistics used
to make Type A uncertainty estimates and heuristic methods used to make Type B uncertainty
estimates.

3.1  Type A Estimates

A Type A uncertainty estimate is defined as an estimate obtained from a sample of data. Data
sampling involves making repeat measurements of the quantity of interest. It is important that
each repeat measurement is independent, representative and taken randomly.

Random sampling is a cornerstone for obtaining relevant statistical information. Therefore, Type
A estimates usually apply to the uncertainty due to repeatability or random error. The data used
for Type A uncertainty estimates typically consist of sampled values. However, the data may be
comprised of sampled mean values or sampled cells. The computed statistics vary slightly
depending on the sample type.

Statistical analysis of sampled values will be presented herein for illustration. Statistical analysis
methods for all three sample types are presented in Appendix C, along with topics on outlier
removal and normality testing.

3.1.1 Statistics for Sampled Values

Because the data sample is drawn from a population® of values, we make inferences about the
population from certain sample statistics and from assumptions about the way the population of
values is distributed. A sample histogram can aid in our attempt to picture the population
distribution.

Probability ——
Density /\—7

«— Sample Histogram
Population Distribution —-

N,

X

Figure 3-1. Repeatability Distribution

The normal distribution is ordinarily assumed to be the underlying distribution for repeatability
or random error. When samples are taken, the sample mean and the sample standard deviation
are computed and assumed to represent the mean and standard deviation of the population

22 In statistics, a population is the total set of possible values for a random variable under consideration.
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distribution. However, this equivalence is only approximate. To account for this, the Student's
t distribution is used in place of the normal distribution to compute confidence limits around the
sample mean.

The sample mean, X, is obtained by taking the average of the sampled values. The average
value is computed by summing the values sampled and dividing them by the sample size, n.

1 |
X=—(X + Xy oot Xy ) == 2 % (3-1)
n -

The sample mean can be thought of as an estimate of the value that we expect to get when we
make a measurement. This "expectation value" is called the population mean, which is
expressed by the symbol .

The sample standard deviation provides an estimate of the population standard deviation. The
sample standard deviation, S, is computed by taking the square root of the sum of the squares of
sampled deviations from the mean divided by the sample size minus one.

5y =\/#§(xi %) (3-2)

n—-1iz

The value n-1 is the degrees of freedom for the estimate, which signifies the number of
independent pieces of information that go into computing the estimate. Absent any systematic
influences during sample collection, the sample standard deviation will approach its population
counterpart as the sample size or degrees of freedom increases. The degrees of freedom for an
uncertainty estimate is useful for establishing confidence limits and other decision variables.

The sample standard deviation provides an estimate of the repeatability or random error
population standard deviation, Op - AS discussed in Chapter 2, Section 2.4, the standard

deviation of an error distribution is equal to the square root of the distribution variance.

T ran = 7 lvar(gx,ran) (3-3)

It has also been shown that

Usy ran = 7 [var(&y ran)- (3-4)

Therefore, the sample standard deviation provides an estimate of the uncertainty due to
repeatability or random error.*

I

Sy (3-5)

&y, ran

If the objective of the uncertainty analysis is to characterize a given single measurement

2 The uncertainty due to repeatability or random error in measurement is estimated from a sample of measurements taken over a
time period short enough to eliminate variations due to systematic drift or other factors.
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performed under specific circumstances, as in developing a statement of capability, then equation
(3-5) should be used.

If the estimate is intended to represent the uncertainty in the mean value due to repeatability or
random error, then the variance of the sample mean is evaluated.

var(&x, ran) = var(X)

n n (3-6)
= Var[rllgl XiJ = nlzvar[_z Xij

1=1

An important criterion for random sampling is that each of the sampled values must be
statistically independent of one another. The variance of a sum of independent variables is the
sum of the variances. Therefore, equation (3-6) becomes

var(X;j) (3-7)

e

1
var(ex ran) = nj
[

Since each X; is sampled from a population with a variance equal to 0')%, then var(X;) = 0')% and

L o
vm%mhpz&=x (3-8)
=1

It has been shown that the population standard deviation o is estimated with the sample standard
deviation Sy. Therefore, the uncertainty in the mean value can be estimated to be

S
Ussran = \Jvar(éx ran) = T?] (3-9)

Once estimates of the sample mean and standard deviation have been obtained, and the degrees
of freedom have been noted, it becomes possible to compute limits that bound the sample mean
with some specified level of confidence. These limits are called confidence limits and the degree
of confidence is called the confidence level.

Confidence limits can be expressed as multiples of the sample standard deviation. For normally
distributed samples, this multiple is called the t-statistic. The value of the t-statistic is
determined by the desired percent confidence level, C, and the degrees of freedom, v, for the
sample standard deviation.

Confidence limits for a single measured value, X, are given by

X* t0(/2,1/SX (3_10)

and confidence limits for the mean or average, X , of a sample of measured values are given by
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X+t ,,, X (3-11)

where o= (1 -C/100) and v=n- 1.

Comparison of equations (3-10) and (3-11) shows that confidence limits about a sample mean
value are much smaller than for a single measured value. This should be expected since, with a
sample mean, we have more information and a greater expectation of the sample mean value
being closer to the population mean.

3.2  Type B Estimates

In some cases, we must attempt to quantify the statistics of measurement error distributions by
drawing on our recollected experience concerning the values of measured quantities or on our
knowledge of the errors in these quantities.”* Estimates made in this manner are called heuristic
or Type B estimates.

Uncertainty estimates for measurement process errors resulting from reference attribute bias,
display resolution, operator bias, computation and environmental factors are typically determined
heuristically via containment limits and containment probabilities.

As discussed in Chapter 2, measurement errors can be described by a variety of probability
distributions. Of these, the normal and lognormal distributions provide the most realistic
statistical representation of measurement errors. Therefore, it is prudent to detail the
development of uncertainty estimates for these distributions. Uncertainty estimates for other
distributions are discussed in Section 3.2.5.

Computing the degrees of freedom for Type B estimates is discussed in Section 3.2.3. Applying
the Student’s t distribution for estimating uncertainties with finite degrees of freedom is
discussed in Section 3.2.4.

3.2.1 Normal Distribution
If the measurement error is normally distributed, then the uncertainty is computed from

L
)
2

where * L are the containment limits, p is the containment probability, and @'() is the inverse
normal distribution function.*®

u= (3-12)

Containment limits may be taken from manufacturer tolerance limits, stated expanded
uncertainties obtained from calibration records or certificates, or statistical process control limits.
Containment probability can be obtained from service history data, for example, as the number

?* Information or experience obtained from previous measurement data, general knowledge about the behavior, properties or
characteristics of materials or instruments, manufacturer specifications, certificates or other calibration history data, reference
data from handbooks, etc.

25 The inverse normal distribution function can be found in statistics texts and in most spreadsheet programs.
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of observed in-tolerances, Niy-1o1, divided by the number of calibrations, N.
nin-tol
C% =100% N

3.2.2 Lognormal Distribution

The lognormal distribution is often used to estimate uncertainty when the error containment
limits are asymmetric. The uncertainty is computed from

2 2
u:|m+q|e/1 /24" —1 (3-13)

where ( is a physical limit for error the distribution, m is the population median and A is the
shape parameter. The quantities m,  and A are obtained by numerical iteration, given
containment limits and an associated containment probability.

3.2.3 Type B Degrees of Freedom

In equation (3-9), the degrees of freedom are assumed to be infinite. However, we know that
heuristic estimates are not based on an "infinite" amount of knowledge. As with Type A
uncertainty estimates, the degrees of freedom quantifies the amount of information that goes into
the Type B uncertainty estimate and is useful for establishing confidence limits and other
decision variables.

Therefore, if there is an uncertainty in the containment limits (e.g., £L = AL) or the containment
probability (e.g., =p £ Ap), then it becomes imperative to estimate the degrees of freedom.

Annex G of the GUM provides a relationship for computing the degrees of freedom for a Type B
uncertainty estimate

2 -2
1 v ~1{Au(x)} (3-14)

26 [ux)] 2| u(x)

where o?[u(X)] is the variance in the uncertainty estimate, u(x), and Au(x) is the uncertainty in the
uncertainty estimate.”® Hence, the degrees of freedom for a Type B estimate is inversely
proportional to the square of the ratio of the uncertainty in the uncertainty divided by the
uncertainty.

While this approach is intuitively appealing, the GUM offers no advice about how to determine
o*[u(x)] or Au(x). Since the publication of the GUM, a methodology for determining o?[u(X)]
and computing the degrees of freedom for Type B estimates has been developed.?’ This
methodology is outlined in Appendix D.

26 This equation assumes that the underlying error distribution is normal.

27 Castrup, H.: “Estimating Category B Degrees of Freedom,” presented at the 2000 Measurement Science Conference, January
21,2001.
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3.2.4 Student’s t Distribution

Once the containment limits, containment probability and the degrees of freedom have been
established, we can estimate the standard deviation or uncertainty of the distribution of interest.
To do this, we use the Student’s t distribution and construct a t-statistic based on the containment
probability and degrees of freedom.

The uncertainty estimate is then obtained by dividing the containment limit by the t-statistic,
according to equation (3-15).

(3-15)

3.25 Other Distributions

Although the normal, lognormal and Student’s t distributions are most often used to estimate
uncertainty, other distributions also have limited applicability. As discussed in Chapter 2, many
of these distributions are described by minimum bounding limits, + a and 100% containment
probability (i.e., p=1).

Uncertainty equations for selected distributions are summarized in Table 3-1. Equations for
additional distributions are provided in Appendix B.

Table 3-1. Uncertainty Equations for Selected Distributions

Distribution Distribution Plot Uncertainty Equation
f(e)
U = a
Quadratic & \/g
¢ where £ a are the minimum bounding limits.
a 0 a

f(e)

o =2 1-5
T A 2
Cosine \/§ T

where + a are the minimum bounding limits.

a 0 a
f(e)
a
. U, =—
Uniform \6
(Rectangular)
where £ a are the minimum bounding limits.
a 0 a ¢
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Distribution

Distribution Plot

Uncertainty Equation

f(e)

. = a
e =——
Triangular \/g
where + a are the minimum bounding limits.
0
(&)
a
U, =—
U-Shaped \/5

where + a are the minimum bounding limits.
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CHAPTER 4: INTERPRETING AND APPLYING
EQUIPMENT SPECIFICATIONS

Manufacturer specifications are an important element of cost and quality control for testing,
calibration and other measurement processes. They are used for equipment selection or
establishing equipment substitutions for a given measurement application. In addition,
manufacturer specified tolerances are used to compute test uncertainty ratios and estimate bias
uncertainties.

Measuring and test equipment (MTE) are periodically calibrated to determine if they are
performing within manufacturer specified tolerance limits. In fact, the elapsed-time or interval
between calibrations is often based on in-tolerance or out-of-tolerance data acquired from
periodic calibrations. Therefore, it is important that manufacturer specifications are properly
interpreted and applied.

This chapter discusses how manufacturer specifications are obtained, interpreted and used to
assess instrument performance and reliability. Recommended practices and illustrative examples
are given for the application to uncertainty estimation. An in-depth discussion about developing,
verifying and reporting MTE specifications can be found in NASA Measurement Quality
Assurance Handbook - Annex 2 Measuring and Test Equipment Specifications.

4.1 Measuring and Test Equipment

Before we delve into defining and interpreting specifications, it is important to clarify what
constitutes MTE. For the purposes of uncertainty analysis, MTE include artifacts, instruments,
sensors and transducers, signal conditioners, data acquisition units, data processors and output
displays.

4.1.1 Artifacts

Artifacts constitute passive devices such as mass standards, standard resistors, pure and certified
reference materials, gage blocks, etc. Accordingly, artifacts have stated outputs or nominal
values and associated specifications.

4.1.2 Instruments

Instruments constitute equipment or devices that are used to measure and/or provide a specified
output. They include, but are not limited to, oscilloscopes, wave and spectrum analyzers,
Josephson junctions, frequency counters, multimeters, signal generators, simulators and
calibrators, inclinometers, graduated cylinders and pipettes, spectrometers and chromatographs,
micrometers and calipers, coordinate measuring machines, balances and scales. Accordingly,
instruments can consist of various components and associated specifications.

4.1.3 Sensors and Transducers

Sensors constitute equipment or devices that respond to a physical input (i.e., pressure,
acceleration, temperature or sound). The terms sensor and transducer are often used
interchangeably. Transducers more generally refer to devices that convert one form of energy to
another. Consequently, actuators that convert an electrical signal to a physical output are also
considered to be transducers. For the purposes of this document, discussion will be limited to
sensors and transducers that convert a physical input to an electrical output.
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Note: Transmitters constitute sensors coupled with internal signal conditioning
and/or data processing components, as well as an output display.

Some sensors and transducers convert the physical input directly to an electrical output, while
others require an external excitation voltage or current. Sensors and transducers encompass a
wide array of operating principles (i.e., optical, chemical, electrical) and materials of
construction. Consequently, their characteristics and associated specifications can cover a broad

spectrum of detail and complexity. A selected list of sensors and transducers is shown in

Table 4-1.
Table 4-1. Sensors and Transducers
Input Sensor/Transducer Output Excitation
Temperature Thermocouple Voltage
RTD Resistance Current
Thermistor Resistance Current, Voltage
Pressure and Sound Strain Gauge Resistance Voltage
Piezoelectric Voltage
Force and Torque Strain Gauge Voltage Voltage
Piezoelectric Voltage
Acceleration/Vibration | Strain Gage Voltage Voltage
Piezoelectric Charge
Variable Capacitance | Voltage Voltage
Position/Displacement | LVDT and RVDT AC Voltage Voltage
Potentiometer Voltage Voltage
Light Intensity Photodiode Current
Flow Rate Coriolis Frequency
Vortex Shedding Pulse/Frequency Voltage
Turbine Pulse/Frequency
pH Electrode Voltage

4.1.4 Signal Conditioners

Signal conditioners constitute devices or equipment that are employed to modify the
characteristic of a signal. Conditioning equipment include attenuators, amplifiers, bridge circuits,
filters, analog-to-digital and digital-to-analog converters, excitation voltage or current, reference
temperature junctions, voltage to frequency and frequency to voltage converters, multiplexers
and linearizers. A representative list of signal conditioning methods and functions is provided in
Table 4-2.

Table 4-2. Signal Conditioning Methods

Function

Type
Analog-to-Digital Conversion (ADC)

Quantization of continuous signal

Amplification Increase signal level
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Type Function

Attenuation Decrease signal level

Bridge Circuit Increase resistance output.

Charge Amplification Convert charge to voltage.

Cold Junction Compensation Provide temperature correction for thermocouple

connection points.

Digital-to-Analog Conversion (DAC) | Convert discrete signal to continuous signal

Excitation Provide voltage or current to transducer.

Filter Provide frequency cutoffs and noise reduction

Isolation Block high voltage and current surges.

Linearization Convert non-linear signal to representative linear output.
Multiplexing Provide sequential routing of multiple signals.

4.1.5 Data Acquisition

Data acquisition (DAQ) equipment provide the interface between the signal and the data
processor or computer. DAQ equipment include high speed timers, random access memory
(RAM) and cards containing signal conditioning components.

4,1.6 Data Processors

Data processors constitute equipment or methods used to implement necessary calculations.
Data processors include totalizers and counters, statistical methods, regression or curve fitting
algorithms, interpolation schemes, measurement unit conversion or other computations. Error
sources resulting from data reduction and analysis are often overlooked in the assessment of
measurement uncertainty.

4.1.7 Output Displays

Output display devices constitute equipment used to visually present processed data. Display
devices can be analog or digital in nature. Analog devices include chart recorders, plotters and
printers, dials and gages, cathode ray tube (CRT) panels and screens. Digital devices include
light-emitting diode (LED) and liquid crystal display (LCD) panels and screens. Resolution is a
primary source of error for digital and analog displays.

4.2 Performance Characteristics

Manufacturer specifications should provide an objective assessment of MTE performance
characteristics. However, understanding specifications and using them to compare or select
equipment from different manufacturers or vendors can be a difficult task. This primarily results
from inconsistent terminology, units, and methods used to develop and report equipment
specifications.

Some manufacturers may provide ample information detailing individual performance
specifications, while others may only provide a single specification for overall accuracy. In
some instances, specifications can be complex, including numerous time or range dependent
characteristics. And, since specification documents are also a means for manufacturers to market
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their products, they often contain additional information about features, operating condition
limits, or other qualifiers.

4.2.1 Static Characteristics

Static performance characteristics provide an indication of how an instrument, transducer or
signal conditioning device responds to a steady-state input at one particular time. In addition to
sensitivity (or gain) and zero offset, other static characteristics include nonlinearity, repeatability,
hysteresis, resolution, noise, transverse sensitivity, acceleration sensitivity, thermal stability,
thermal sglgqsitivity shift, temperature drift, thermal zero shift, temperature coefficient, and
accuracy.

4.2.2 Dynamic Characteristics

Dynamic performance characteristics provide an indication of how an instrument, transducer or
signal conditioning device responds to changes in input over time. Dynamic characteristics
include warm-up time, response time, time constant, settling time, zero drift, sensitivity drift,
stability, upper and lower cutoff frequencies, bandwidth, resonant frequency, frequency
response, damping, phase shift, and reliability.”

4.2.3 Other Characteristics

Other characteristics are often included with performance specifications to indicate input and
output ranges, environmental operating conditions, external power requirements, weight,
dimensions and other physical aspects of the device. These other characteristics include rated
output, full scale output, range, span, dynamic input range, threshold, dead band, operating
temperature range, operating pressure range, operating humidity range, storage temperature
range, thermal compensation, temperature compensation range, vibration sensitivity, excitation
voltage or current, weight, length, height, and width.

4.3  Obtaining Specifications

Manufacturers publish MTE specifications on their web pages, in product data sheets, technical
notes, control drawings and operating manuals. Some manufacturers also maintain an archive of
specification information for discontinued products. In some instances, manufacturers will only
provide MTE specification information upon formal request by phone, fax or email. In general,
however, published specifications are relatively easy to find via an internet search.

4.4  Interpreting Specifications

Ultimately, the MTE user must determine which specifications are relevant to their application.
Therefore, a basic understanding of the fundamental operating principles of the MTE is an
important requirement for proper interpretation of performance specifications. In some cases,
first-hand experience about the MTE may be gained through calibration and testing. In other
cases, detailed knowledge about the MTE may be obtained from operating manuals, training
courses, patents and other technical documents provided by the manufacturer.

Ideally, MTE specifications provide adequate details about the expected performance
characteristics of a representative group of identical devices or items (i.e., a specific
manufacturer and model). This information should be reported in a logical format, using

8 Accuracy is typically reported as a combined specification that accounts for nonlinearity, hysteresis, and repeatability.
% Reliability specifications typically refer to performance over an extended time-period or maximum number of cycles.
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consistent terms, abbreviations and units that clearly convey pertinent performance
characteristics.

For the most part, manufacturer specifications are intended to convey tolerances or limits that are
expected to bound the MTE performance characteristics. For example, these limits may
correspond to temperature, shock and vibration parameters that affect the sensitivity and/or zero
offset of a sensing device.

Unfortunately, there is no universal guide or standard regarding the development and reporting
of MTE specifications. Inconsistency in the methods used to develop and report performance
specifications, and in the terms and units used to convey this information, create obstacles to the
proper understanding and interpretation of MTE specifications.

In select instances, the information included in a specification document may follow a
standardized format.’® However, the vast majority of specification documents fall short of
providing crucial information about the confidence levels associated with reported specification
limits. MTE manufacturers also don’t indicate the applicable probability distribution for a
particular performance characteristic.

Consequently, it is difficult to estimate uncertainties from MTE specifications without gaining
further clarification or making some underlying assumptions. It is a good practice to

1. Review the specifications and highlight the MTE characteristics that need
clarification.

2. Check the operating manual and associated technical documents for other useful
details.

3. Request additional information and clarification from the manufacturer’s
technical department.

441 Terms, Definitions and Abbreviations

Technical organizations, such as ISA and SMA, have published documents that adopt
standardized instrumentation terms and definitions.”'** However, there is a need for further
clarification and consistency in the general terms and definitions used in the reporting of MTE
specifications. General terms and definitions for MTE specifications and other related
characteristics are provided in Appendix A. There are particular terms and abbreviations that
require further discussion.

For example, some MTE specifications may convey performance characteristics as “typical” or
“maximum” values. However, the basis for these classifications is not often apparent and
introduces confusion about which specification (typical or maximum) is applicable. In addition,
since associated confidence levels, containment probabilities or coverage factors are not often

3% See for example, ISA-RP37.2-1982-(R1995): Specifications and Tests for Strain Gauge Pressure Transducers, The
Instrumentation, Systems and Automation Society, Reaffirmed December 14, 1982.

31 ISA-37.1-1975 (R1982): Electrical Transducer Nomenclature and Terminology, The Instrumentation, Systems and
Automation Society, Reaffirmed December 14, 1982.

32 SMA LCS 04-99: Standard Load Cell Specifications, Scale Manufacturers Association, Provisional 1** Edition, April 24, 1999.

35



provided, it is difficult to clearly interpret either set of specifications. Consequently, the
manufacturer must be contacted for further clarification.

MTE specifications commonly include the use of abbreviations such as FS, FSO, FSI, RDG, RO,
RC and BSL. The abbreviation FS (or F.S.) refers to full scale. Similarly, the abbreviation FSO
(or F.S.0.) refers to full scale output and the abbreviation FSI (or F.S.1.) refers to full scale input.
Specifications that are reported as % FS (or ppm FS) generally refer to full scale output. When in
doubt, however, contact the manufacturer for clarification.

The abbreviation RDG refers to reading or output value. The abbreviation RO (or R.O.) refers to
rated output and the abbreviation RC (or R.C.) refers to rated capacity. Some MTE
specifications also use the abbreviation BSL (or B.S.L.) to indicate that a combined non-
linearity, hysteresis, and repeatability specification is based on observed deviations from a best-
fit straight line. Abbreviations commonly used in MTE specifications are listed in the Acronyms
and Abbreviations section of this document.

4.4.2 Qualifications, Stipulations and Warnings

Most MTE specifications describe the performance characteristics covered by the manufacturer’s
product warranty. These reported specifications also often include qualifications, clarifications
and/or caveats. Therefore, it is a good practice to read all notes and footnotes carefully to
determine which, if any, are relevant to the specifications.

For example, MTE specification documents commonly include a footnote warning that the
values are subject to change or modification without notice. Manufacturers do not generally
modify existing MTE specifications unless significant changes in components or materials of
construction warrant the establishment of new specifications. However, it may be necessary to
contact the manufacturer to ensure that the appropriate MTE specification documents are
obtained and applied.*

MTE specifications may state a recommended range of environmental operating conditions to
ensure proper performance. They may also include a qualification indicating that all listed
specifications are typical values referenced to standard conditions (e.g., 25 °C and 10 VDC
excitation). This qualification implies that the primary performance specifications were
developed from tests conducted under a particular set of conditions.

If so, additional specifications, such as thermal zero shift, thermal sensitivity shift and thermal
transient response error, are included to account for the variation in actual MTE operating
conditions from standard conditions. The MTE user must then consider whether or not these
additional specifications are relevant to the MTE application.

4.4.3 Specification Units

As with terms and definitions, specification units can vary between manufacturers of similar
MTE models. In addition, specification units can vary from one performance characteristic to
another for a given MTE manufacturer model.

33 That is, the published specifications considered by the manufacturer to be applicable at the time the MTE was purchased.
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For example, display resolution specifications can be expressed in digits, counts, percent (%) or
other units such as mV or °C. Nonlinearity, hysteresis and repeatability specifications can be
expressed as % FS, ppm FS, % RDG, ppm RDG, % RO or other units. Sensitivity specifications
can be expressed as mV/psi,

an be expressed as % FS/°F, % RO/°C, ppm/°C, % FS/g, psi/g, psi/°F, mV/°C, %Load/°F, etc.
Noise specifications such as Normal Mode Rejection Ratio (NMRR) and Common Mode
Rejection Ratio (CMRR) are generally specified in decibels (dB) at specified frequencies
(usually 50 and 60 Hz).

Different specification units can make it especially difficult to interpret specifications. In most
cases, unit conversion is required before specifications can be properly applied. Selected

specification conversion factors are listed in Table 4-3 for illustration.

Table 4-3. Specification Conversion Factors

Relative to Relative to | Relative to
Percent ppm dB 10V 100 psi 10 kg/°C
1% 10000 | -40 100 mV 1 psi 100 g/°C
0.1% 1000 -60 10 mV 0.1 psi 10 g/°C
0.01% 100 -80 I mV 0.01 psi 1 g/°C
0.001% 10 -100 | 100 uVv 0.001 psi 100 mg/°C
0.0001% | 1 -120 | 10 uv 0.0001 psi 10 mg/°C

Note: A decibel (dB) is a dimensionless unit for expressing the ratio of two
values of power, P, and P,, where dB = 10 log(P»/P;). The dB values in Table
4-3 are computed for P,/P; ratios corresponding to the percent and ppm values
listed. For electrical power, it is important to note that power is proportional to
the square of voltage, V, so that dBy = 10 log (Vi2NVL%) =20 log (V1/V>).
Similarly, acoustical power is proportional to the square of sound pressure, p, so
that dBA = 10 log (p1*/p2°) = 20 log (p1/p2).

Additional calculations may be required before specifications can be properly used to estimate
MTE parameter bias uncertainty and tolerance limits. This brings us to the topic of applying
specifications.

45  Applying Specifications

Manufacturer specifications can be used to purchase or substitute MTE for a given measurement
application, estimate bias uncertainties and establish tolerance limits for calibration and testing.
Therefore, MTE users must be proficient at identifying applicable specifications and in
interpreting and combining them.

It is also important that manufacturers and users have a good understanding and assessment of
the confidence levels and error distributions applicable to MTE specifications. This is a crucial
part of the process and requires some further discussion.

4.5.1 Confidence Levels

Some manufacturer MTE specifications are established by testing a sample of the produced
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model population. The sample test results are used to develop limits that ensure a large
percentage of the MTE model population will perform as specified. Consequently, the
specifications are confidence limits with associated confidence levels.**

That is, the limits specified for an MTE performance characteristic are established for a
particular confidence level and degrees of freedom (or sample size), as discussed in Chapter 2.
Confidence limits, Ly, for values of a specific performance characteristic, X, are expressed as

il-X = it05/2,1/SX 4-1)
where
ton,, = t-statistic
a = significance level = 1 - C/100

C = confidence level (%)

v = degrees of freedom=n— 1
n = sample size

Sx = sample standard deviation.

Ideally, confidence levels should be commensurate with what MTE manufacturers consider to be
the maximum allowable false accept risk (FAR).* The general requirement is to minimize the
probability of shipping an MTE item with nonconforming (or out-of-compliance) performance
characteristics. In this regard, the primary factor in setting the maximum allowable FAR may be
the costs associated with shipping nonconforming products.

Unfortunately, manufacturers don’t commonly report confidence levels for their MTE
specifications. In fact, the criteria and motives used by manufacturers to establish MTE
specifications are not often apparent. Most MTE manufacturers see the benefits, to themselves
and their customers, of establishing specifications with high confidence levels. However,
competition between MTE manufacturers can result in unrealistically optimistic specifications
that, in-turn, can result in excessive out-of-tolerance occurrences.>¢

Alternatively, some manufacturers may test the entire produced MTE model population to ensure
that individual items are performing within specified limits prior to shipment. However, this
compliance testing process does not ensure a 100% probability (or confidence level) that the
customer will receive an in-tolerance item. The reasons for this include

1. Measurement uncertainty associated with the manufacturer MTE compliance
testing process.

2. MTE bias drift or shift resulting from shock, vibration and other environmental
extremes during shipping and handling.

Manufacturers may account for the uncertainty in their testing and measurement processes by
using a higher confidence level (e.g., 99.9%) to establish larger specification limits or by

3* In this context, confidence level and containment probability are synonymous, as are confidence limits and containment limits.
3% From a producer or manufacturer’s perspective, false accept risk is the probability of accepting and shipping a nonconforming
item.

36 See for example, Deaver, David: “Having Confidence in Specifications,” proceeding of NCSLI Workshop and Symposium,
Salt Lake City, UT, July 2004.
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employing arbitrary guardbanding®’ methods and multiplying factors. In either case, the
resulting MTE specifications are not equivalent to 100% confidence limits.

Some manufacturers also conduct special environmental and accelerated life testing on a
population subset to quantify the effects of potential shipping and handling stresses. They might
even include separate specifications for these effects. However, not all MTE manufacturers
incorporate these rigorous practices.

45.2 Error Distributions

MTE performance characteristics, such as nonlinearity, repeatability, hysteresis, resolution,
noise, thermal stability and zero shift constitute sources of measurement error. As discussed in
Chapter 2, measurement errors are random variables that follow probability distributions.
Therefore, MTE performance characteristics are also considered to be random variables that
follow probability distributions.

This concept is important to the interpretation and application of MTE specifications because an
error distribution allows us to determine the probability that a performance characteristic is in
conformance with its specification.

Typically, manufacturers do not identify an underlying distribution for performance
specifications. This might imply that a specification simply bounds the range of values. For the
sampled MTE model specifications described in section 4.5.1., the performance characteristics of
an individual unit may vary from the population mean. However, the majority of the units
should perform well within the specification limits. Accordingly, a central tendency exists that
can be described by the normal distribution.

If the limits are asymmetric about a specified nominal value, it is still reasonable to assume that
individual MTE performance characteristics will tend to be distributed near the nominal value.
In this case, the normal distribution may still apply. However, the lognormal or other
asymmetric distribution may be more applicable.

There are a couple of exceptions when the uniform distribution would be applicable. These
include digital output resolution error and quantization error resulting from the digital conversion
of an analog signal. In these instances, the specifications limits, , + Lyes and + Lquan, would be
100% confidence limits defined as

Tles == (4-2)

| =

and

A

where

= least significant display digit

= full scale range of analog to digital converter
N = quantization significant bits.

> =

37 Guardbands are supplemental limits used to reduce false accept risk during calibration and testing.
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4.5.3 Combining Specifications
In testing and calibration processes, an MTE performance characteristic is identified as being
in-tolerance or out-of-tolerance. In some cases, the tolerance limits are determined from a

combination of MTE specifications. For example, consider the accuracy specifications for the
DC voltage function of a Fluke 8062A digital multimeter.*®

For a displayed reading of 5 VDC, the accuracy specification is reported as * (0.07% Reading +
2 digits) and the resolution as 1 mV. In this case, the accuracy specification is £ (0.07%
Reading + 2 mV).* To compute the combined accuracy specification, we must convert the %
Reading to a value in mV units.

0.07% Reading = (0.07/100) x 5 V x 1000 mV/V = 3.5 mV

The total accuracy specification for the 5 V output reading would then be + (2.5 mV + 2 mV) or
+55mV.

For another example, consider the tolerance specifications for different gage block grades
published by NIST.* Suppose we want to compute the combined tolerance limits for a Grade 2
gage block with 20 mm nominal length. There are two sets of specification limits. The first
specification limits (+0.10 pm, -0.05 pum) are asymmetric, while the second specification limits
(£ 0.08 um) are symmetric. Consequently, the combined tolerance limits will be asymmetric and
upper and lower tolerances (e.g., +L, -L,) must be computed.

There are two possible ways to compute values for L; and L, from the specifications: linear
(additive) combination or root sum square (RSS) combination.

1. Linear Combination

L
L,

0.10+0.08=0.18
0.05+0.08=0.13

2. RSS Combination

Ly =4)(0.10)% +(0.08) =0.0164 =0.13
Ly =/(0.05)7 +(0.08)* =+/0.0089 = 0.09

If the specifications are interpreted to be additive, then the combined tolerance limits for the 20
mm Grade 2 gage block are +0.18 um, -0.13 um. Alternatively, if they are combined in RSS,
then the resulting tolerance limits are +0.13 pm, -0.09 um.

38 Specifications from 8062A Instruction Manual downloaded from www.fluke.com
% Understanding Specifications for Precision Multimeters, Application Note Pub_ID 11066-eng Rev 01, ©2006 Fluke
Corporation.

40 The Gage Block Handbook, NIST Monograph 180, 1995.
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Linear or RSS specification combination cannot be used for MTE that have complex
performance characteristics. For example, consider the specifications for a Transducer
Techniques MDB-5-T load cell .*!

The load cell sensing element is a resistance-based strain gauge that requires an external
excitation voltage. This load cell has a rated output of 2 mV/V for loads up to 5 1bf which
equates to a nominal sensitivity of 0.4 mV/V/Ib¢. Therefore, the load cell output is a function of
the excitation voltage and the applied load.

LCout =W xS xVg, (4-4)

where

W = Applied load or weight
S Load cell sensitivity
Vex = Excitation voltage

Equation (4-4) shows the mathematical relationship between the physical input (i.e., weight) and
the electrical output (i.e., voltage) of the load cell.*? This relationship is called a transfer
function.

According to the specifications, the load cell output will be affected by the following error
sources:

o Excitation Voltage, £ 0.25 V

e Nonlinearity, + 0.05% of R.O.

e Hysteresis, + 0.05% of R.O.

e Noise, + 0.05% of R.O.

e Zero Balance, + 1% of R.O.

o Temperature Effect on Output, £ 0.005% of Load/°F
e Temperature Effect on Zero, £ 0.005% of R.O./°F

If the load cell is tested or calibrated using a weight standard, then any error associated with the
weight should also be included.

Equation (4-4) needs to be modified to account for these error sources. Unfortunately, given the

assortment of specification units, the error terms cannot simply be added at the end of the
equation. The appropriate load cell output equation is expressed in equation (4-5).

LCout =[ (Ws + TEqut X TReg ) x S + NL+ Hys + NS + ZO + TE sgrg x TRo [xVg,  (4-5)

where
Ws =W, + W, (4-6)

4 Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfm
2 The validity of this equation depends on the use of appropriate units for the variables, W, S and Vg,.
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and

VEX = Vn + Ve (4'7)

= Nominal or stated value of weight standard

Bias of weight standard

= Nominal excitation voltage
= Excitation voltage error

= Temperature effect on output
= Temperature range in °F

= Nonlinearity

= Hysteresis

= Noise and ripple

= Zero offset

= Temperature effect on zero

Equations (4-5) through (4-7) constitute an error model for the load cell output. As discussed in
Chapter 2, given some knowledge about the error distributions, the variance addition rule can be
applied to estimate the uncertainty in the load cell output voltage for a given applied load.

This procedure involves some additional concepts and methods that are covered in subsequent
chapters. A detailed uncertainty analysis of a load measurement system is presented in

Chapter 7.
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CHAPTER 5: DIRECT MEASUREMENTS

In direct measurements, the quantity of interest (i.e., subject parameter or measurand) is obtained
directly by measurement and is not determined indirectly by computing its value from the
measurement of other variables or quantities. Examples of direct measurements include, but are
not limited to the following:

e Measuring the length of an object with a ruler or micrometer.
e Measuring the output from a DC voltage reference with a voltmeter.

e Measuring the temperature of a substance using a liquid-in-glass thermometer.

In this chapter, the analysis of a micrometer calibrated with a gage block is used to illustrate the
basic concepts and methods used to estimate uncertainty for direct measurements. The general
uncertainty analysis procedure includes the following the steps outlined in Chapter 2:

Define the Measurement Process
Develop the Error Model

Identify Error Sources and Distributions
Estimate Uncertainties

Combine Uncertainties

ARG o e

Report Analysis Results

5.1 Define the Measurement Process

In this example, a 0-25 mm digital micrometer is calibrated at 10 mm nominal length using a
Class 2 (Grade 2) gage block set. Multiple readings of the 10 mm gage block length are taken
with the micrometer. The repeat readings observed with the micrometer are listed in Table 5-1.

Table 5-1. Micrometer Measurements

Deviation from
Reading | Length (mm)  Nominal (um)
1 10.003 3
2 10.002 2
3 10.003 3
4 10.004 4
5 10.001 1
6 10.005 5
7 10.002 2
8 10.004 4

In this analysis, the quantity of interest is the average length obtained from the micrometer
measurements corrected to a standard reference temperature of 20 °C. This value will be
reported along with its estimated total uncertainty. The results of the uncertainty analysis will be
used to determine if the micrometer is within the manufacturer specified tolerance limits.
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5.1.1 Gage Block Specifications

The tolerance specifications for the Grade 2 gage block set are obtained from tabulated data
published by NIST.* Subsets of the data are listed in Tables 5-2 and 5-3.

Table 5-2. Tolerance Grades for Metric Gage Blocks (um)

Nominal Grade .5 Grade 1 Grade 2 Grade3

<10 mm 0.03 0.05 +0.10,-0.05 | +0.20, -0.10
<25 mm 0.03 0.05 +0.10, -0.05 | +0.30,-0.15
<50 mm 0.05 0.10 +0.20,-0.10 | +0.40,-0.20
<75 mm 0.08 0.13 +0.25,-0.13 +0.45, -0.23
<100 mm 0.10 0.15 +0.30, -0.15 | +0.60, -0.30

Table 5-3. Additional Tolerance for Length, Flatness, and Parallelism (um)

Nominal Grade .5 Grade 1 Grade 2 Grade3
<100 mm +0.03 +0.05 +0.08 +0.10
<200 mm +0.08 +0.15 +0.20
<300 mm +0.10 +0.20 +0.25
<500 mm +0.13 +0.25 +0.30

Gage block length is defined at the following standard reference conditions:

20 °C (68 °F)

barometric pressure = 101.325 KPa (14.7 psia)
water vapor pressure = 1.33 KPa (10 mm of mercury)
CO; content of air = 0.03%.

temperature

Only temperature has a measurable effect on the physical length of the gage block as a result of
thermal expansion or contraction. The nominal coefficient of thermal expansion for gage block
steel is 11.5 x 10°/°C. According to ANSI/ASME,* the maximum allowable limits for the
coefficient of thermal expansion are + 1 x 10°/°C.

5.1.2 Micrometer Specifications

Manufacturer specifications for the micrometer state a digital resolution of 1 pm and error
(tolerance) limits of =4 um. For the purposes of this analysis, the coefficient of thermal
expansion for the micrometer is taken to be 5.6 x 10°%/deg °C with corresponding error limits of
+0.5 x 10°%/°C.

5.1.3 Environmental Temperature Specifications

During the measurement process, an average laboratory temperature of 23 °C was monitored and
maintained. The tolerance limits of the temperature monitoring device are + 2 °C.

4 The Gage Block Handbook, NIST Monograph 180, 1995.
* Precision Gage Blocks for Length Measurement (Through 20 in. and 500 mm), ANSI/ASME B89.1.9M-1984.
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5.2 Define the Error Model

In this example, a 10 mm nominal gage block is measured with a micrometer and the average
length reported. Therefore, the basic measurement model for the length, X, is defined as

X= Xirye T €x (5-1)
where

Xeue = true gage block length
& = total error in the length measurement.

The error model for & is the sum of the errors encountered during the length measurement
process and can be generally expressed as

& = ateot-+té& (5-2)
where the numbered subscripts signify the different error sources.

5.3  Identify Error Sources and Distributions
In the length measurement process, we must account for the following errors:

e Bias in the value of the 10 mm gage block length, ggpias.

e Error associated with repeat measurements, &an.

e Error associated with the digital resolution of the micrometer, &wres.
e Operator bias during the micrometer measurement process, &op.

o Environmental factors errors resulting from thermal expansion of the gage block
and the micrometer, &ny.

The micrometer bias is not included, because this is what is estimated in the uncertainty analysis.
The error model for the length measurement can now be expressed as

& = &Gbias T &rant EMres T Eop T Eenv. (5-3)

The specifications for the gage block and micrometer do not provide insight about which
probability distribution to apply to each of these error sources. However, as discussed in
Chapter 4, Section 4.5.2, error distributions often exhibit a central tendency.

In general, if an error distribution has a central tendency and the error limits are symmetric, the
normal distribution is applicable. If the error limits are not symmetric, the lognormal or other
asymmetric distribution may be more applicable. For the length measurement example, the
uniform distribution is only applicable to the micrometer digital resolution error. More
discussion on the selection and application of error distributions for the length measurement
example are discussed in the following section.
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54 Estimate Uncertainties

With the exception of repeatability or random error, the uncertainty in each error source must be
estimated heuristically from the containment limits, £L, containment probability, p, and the
inverse error distribution function, F''(p), as shown in equation (5-4).

L

u=
F'(p)

(5-4)

As discussed in Chapter 4, equipment specifications should convey key information about the
performance characteristics of the MTE. For the most part, manufacturer specification data
include + limits for error sources that affect the MTE performance. Information about the
confidence level associated with these specification limits or the applicable error distribution are
not often provided.

Consequently, it is a good practice to thoroughly review the appropriate MTE specification
information and highlight items that need clarification. The manufacturer should then be
contacted for additional information and clarification as required. If this information is not
obtainable from the manufacturer, then alternative sources should be employed including your
own experience and best judgement.

5.4.1 Gage Block Bias
The gage block specifications indicate that the length bias is comprised of two error sources

&ias = &ol T Qip (5'5)

where &g 1s the tolerance error and &y 1s the error due to length, flatness and parallelism.
Applying the variance addition rule,

var(&ias) = var(&ol + afp) (5-6)
var(&ol) + var(&gp) + 2cov(&ol, &fp)

where cov(&ol, afp) 1S the covariance between &o and &ip. From Axiom 2 and equation (5-6), the
gage block bias uncertainty can be expressed as

2 .2
Ugbias = \/ Uol + Uifp + 2 Ptol, ifp Utol Uity - (5-7)

The tolerance error limits for Grade 2 gage blocks with nominal length less than 25 mm are
+0.10 um and — 0.05 um. Given these skewed limits, the lognormal distribution should be
applicable for &. The error limits for length, flatness and parallelism for Grade 2 gage blocks
with nominal length less than 100 mm are + 0.08 um. Therefore, the normal distribution should
be applicable for gyp.

From experience, we know that gage block specifications typically represent a high in-tolerance

or containment probability. In this analysis, we will assume that a 99% containment probability
applies for both error source limits.
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5.4.1.1 Tolerance Error

To compute the uncertainty in the tolerance error, Ui, we refer to the lognormal distribution plot
shown in Figure 5-1, where the mode, M, is equal to 10 mm, the lower containment limit, L,

is — 0.05 pm, the upper containment limit, L, is + 0.10 pm and the containment probability is
99%.

f(e)
L, L,

q M ¢

Figure 5-1. Right-handed Lognormal Distribution

As discussed in Appendix B, section B.2, the probability density function for a right-handed
lognormal distribution is given by

2
1 =0\ /5,2
fe)=———expi—|1 )
(©) Jﬁﬂ|g—q|eXp {n(m—qﬂ ?

where ( is the physical limit for & m is the population median and A is the shape parameter. The
uncertainty, Uy, 1S the population standard deviation, o, which is defined as

2 2
a:|m—q|e’1 24" 1.

The population median is defined as
2
m=q (1 — et ) .

The unknown variables g and 4 must be solved for iteratively using the containment limits and
containment probability.* The numerical iteration was conducted off-line and the resulting
uncertainty estimated to be

Ut = 0.0287 pum.

5.4.1.2  Length, Flatness and Parallelism Error

The uncertainty due to gage block length, flatness and parallelism error can be computed from
the + 0.08 um containment limits, 99% containment probability and the inverse normal
distribution function, ®'("). The inverse normal distribution function, can be found in statistics
texts and in most spreadsheet programs.

4 Additional guidance is provided in Appendix B, Section B.2.
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L, __ 0.08um _0.08um
Ifp ®_1(1+o.99j 2.5758

=0.0311 pm.

2

5.4.1.3  Gauge Block Bias Uncertainty

There is no reason to believe that there is any correlation between the gage block tolerance error
and the error due to length, flatness and parallelism. Therefore, the total uncertainty in the gage
block bias is estimated to be

Ugpize = y/(0.0287 pm)? +(0.0311 pm)?

=4/0.00179 pm?

= 0.042 um.

5.4.2 Repeatability (Random Error)

The uncertainty in the repeatability or random error in the length measurement is determined
from the repeat measurements. As discussed in Chapter 3, the uncertainty due to repeatability is
equal to the standard deviation of the sample data. The standard deviation of the sample of
length measurements is given by

sxz\/Li(xi_x)z

n—1liz

where X; is the ith reading and the mean value of the sample is computed from
-1
X=—(X + X+t Xy ).
n

The mean value of the length measurements is

- (10.003 +10.002 +10.003+10.004 +10.001+10.005+10.002 + 10.004)
= mm
8

=10.003 mm

and the differences between the measured values and the mean value are
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X, —X =10.003-10.003 =0.000 mm = 0 um

X, =X =10.002-10.003 =-0.00l mm = —1 um
X; —X =10.003-10.003 =0.000 mm = 0 pm

X, —X =10.004-10.003=0.00l mm =1 pm

X; =X =10.001-10.003=-0.002 mm = —2 pum
X, —X =10.005-10.003=0.002 mm = 2 um
X; =X =10.002-10.003=-0.00l mm =-1 pm
Xg —X =10.004 -10.003=0.001 mm = 1 um.

The standard deviation is

_ % um =1.71 pm =131 pm.

Repeatability uncertainty is
Uy ran =Sx =1.31 pm
and the repeatability uncertainty in the mean value is

S JL3m G 63 um,

Ug ran = ﬁ \/g

Since the mean value is the quantity of interest in this analysis, Uy 5 should be included in the

overall uncertainty estimate.

5.4.3 Resolution Error

To estimate the uncertainty due to resolution error, we note that the micrometer has a digital
readout. Therefore, the resolution error can be assumed to be uniformly distributed. The
resolution uncertainty is estimated from the £ 0.5 pm containment limits, 100% containment
probability and the inverse uniform distribution function.

0.5 um

Ureg = —F—
res \/5

=0.289 um

5.4.4 Operator Bias

Inconsistencies as the operator uses the micrometer to measure the gage block length are most
likely accounted for in the repeatability or random error. However, we still need to account for
the possibility of some consistent or systematic operator bias during the measurement process.
Some possible sources of operator bias include how the operator positions the micrometer on the
gauge block and the amount of clamping force applied to the gage block.
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Since we do not know the sign or magnitude of the operator bias, we consider it to be a normally
distributed error source. To estimate the uncertainty in the operator bias, we will assume
containment limits that are based on half of the resolution, with a 90% containment probability.

L _ (05)(tum) _05um
op ®_1(1+§.90j 1.6449

=0.304 um .

Note: The containment limits for the operator bias are not necessarily based on
resolution error. Best judgement and knowledge should be used in developing
appropriate containment limits and containment probability.

5.45 Environmental Factors Error

For this error source, we are interested in determining the uncertainty in the length measurement
due to thermal expansion effects. In this case, we must consider the thermal expansion of the
gage block and the micrometer. We must also account for the uncertainty in the environmental
temperature reading and the uncertainty in the expansion coefficients.

The change in length measurement, Ax, due to the temperature departure from 20 °C nominal,
results from the expansion (or contraction) of the gage block and the micrometer. The net
change is computed from the following equation

AX = Xnom X (0g— otm) x AT (5-8)
where
Xnom = nominal gage block length = 10 mm
oy = gage block expansion coefficient = 11.5 x 10°%/°C
am = micrometer expansion coefficient = 5.6 x 10°%/°C
AT ambient temperature — reference temperature = 23 °C—-20 °C = 3 °C.

Therefore, the change in length is computed as

Ax = 10mmx (11.5— 5.6) x 10%°C x 3 °C
1.77 x 10* mm
= 0.177 pm.

The length measurement can be referenced back to 20 °C by subtracting 0.177 um from the data
sample average. However, we must account for the error in this length correction due to errors
in the monitoring temperature and expansion coefficients. The error model is developed as
follows:

gAx = AX - AXtrue (5'9)
where

AXirye = [(ag ~ &g, )— (am ~ &g )] X [AT — &7 |- (5-10)

Substituting equations (5-8) and (5-10) into equation (5-9) yields
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EAx = XnomAT Sag ~ XnomAT € T XnomZgEAT ~ XnomImEAT
(5-11)
~ Xnom&ay EAT + Xnom&ay, €AT -

The last two terms in equation (5-11) are referred to as second order terms and are considered to
be small compared to the other first order terms. Neglecting second order terms, we can express
the length change error equation in a simpler form.

Eax = XnomAT Eag ~ XnomAT €4 + Xnom (ag - ap ) EAT (5-12)
The coefficients for Eay > Eap, and &p1 are actually the partial derivatives of AX with respect to
Oy, Onm and AT.

AX
OAX _ XnomAT =C _6 =—XomAT =C,, and OAX

gs o aA_T:Xnom (ag_am):CAT

oy
Therefore, the length change error can be expressed as

Eax = Cgéay T Cméqy, T CATEAT (5-13)

where Cg, Cry and Cat are sensitivity coefficients that determine the relative contribution of the
temperature and expansion coefficient errors to the length change error.

Applying the variance operator to equation (5-13) we have
var (&xy ) = var (Cg Eary T CmEay + CAT EAT )
= cé Vaf(gag )+ crzn var(gy )+ ciT var(eat ) +2C4Cy cov (gag »Eay, ) (5-14)
+2CgCAT COV (gag L EAT ) +2CyCAT COV (8am S EAT )

From Axiom 2, the uncertainty in the length change error can be expressed as

2,2 2.2 2 .2
cgugag +Cmu,  +CxTU +2cgcm,ogag oy ugag Ug,,

Ug,, = om (5-15)
+ 2Cg CaT pé‘ag SEAT u&‘ag ugAT + 2CmCAT pgam JEAT ué‘am ugAT

where the last three terms account for any error correlations.
There is no physical reason to believe that a correlation exists between the expansion coefficient

errors. Similarly, there shouldn’t be any correlation between the temperature error and the
expansion coefficient errors. Therefore,
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=0, =0

pgag »gotm pgag SEAT =0 ’ pgam SEAT

and the uncertainty in the length change error can be expressed as

am

_ [e2,,2 2.2 2 .2
g, _\/cgu%g +Cpu +CATU8AT . (5-16)

The appropriate probability distribution for the temperature error and expansion coefficient
errors is the normal distribution. Therefore, the associated uncertainties can be estimated from
the containment limits, containment probability and the inverse normal distribution function. In
this analysis, we will assume 95% containment probability for all three error sources.

The uncertainty in the temperature error is estimated from + 2 °C containment limits and a 95%
containment probability.

y - 2 2
Eat o1 (1 + 0.95J 1.9600
2

02 °C

Note: In this example, only the error resulting from the temperature measuring
device is considered. However, other error sources resulting from variation in the
room temperature and in the gage block and micrometer temperatures during the
measurement process may also need to be considered.

The uncertainty in the gage block expansion coefficient is estimated from + 1 x 10°/°C
containment limits and a 95% containment probability.

-6 /0 -6 /0
0 - 1x1077/°C _1x10 /Czo'smxlo_é/oC
@l (1 + 0.95} 1.9600

2

The uncertainty in the micrometer expansion coefficient is estimated from + 0.5 x 10°°/°C
containment limits and a 95% containment probability.

-6 /o -6 /o
U, _ 0.5x10 /C:O.leO /C:O.255><10_6/°C
m ol (1 + 0.95) 1.9600

2

The corresponding sensitivity coefficients are

Cg = 10mmx3°C = 30 mm-°C = 3 x10* um-°C
Cm = —10mm x 3 °C = —30 mm-°C = —3 x 10" pm-°C
10 mm x (11.5 - 5.6) x 10°/°C = 5.9 x 10° mm/°C = 5.9 x 10 um/°C

CaT
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and the uncertainty in the length change error is computed to be

2 2 2 2 2
U, =4/(3%10*) x(0.510x1070)" +(-3x10*)" x(0.255x107°}" +(5.9x1072)" x(1.020)* pum
EAx

—\234x1074 +585x107° +3.62x 107 um

~3.91x1073 um = 0.063 pm .

Thus, the uncertainty due to environmental factors error is

Ueny = Ug,, = 0.0625 um.

55 Combine Uncertainties

With the variance addition rule and Axiom 2, we have a method for combining the measurement
process uncertainties Ugbias, Ug rqn » UMres, Uop and Ueny. No correlations should exist between

measurement process errors, so the uncertainty in the length measurement can be expressed as

2 2 2 2 2
Ugp = \/uGbias +Ux ran  Umres T Uop + Ueny - (5-17)

Therefore, the uncertainty in the average length measurement is computed to be

u, = J(0.042)% + (0.463)% +(0.289)? +(0.304)% + (0.063) pm
=/0.396 pm = 0.629 um.

The effective degrees of freedom, ver, for the combined uncertainty can be estimated using the
Welch-Satterthwaite formula

4
Vgt = Uer
eff —

Ut ud u ug ul

Gbhias + X,ran + Mres + p 4 —env

VGbias VYx,ran VMres VYop  Venv (5-18)

U47 U47
— &% =7 x &%

4 ul 4 ul 4 ud

UGbias 4 oX.ran +ques L op +uenv X,ran

0 7 o0 o0 0

The degrees of freedom for the combined uncertainty are computed to be

y —7XM—7X34—238
off = T 4=23.
(0.463 um)

and are rounded to the nearest whole number, 24.
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56  Report Analysis Results

All measurement uncertainties relevant to the micrometer calibration process have been taken
into account and the analysis results can now be evaluated. In calibration, uncertainty analysis is
important for two main reasons. First, to identify excessive uncertainties due to sources of error
in our measurement process. Second, to communicate the quantity of interest and its associated
uncertainty or to decide whether the quantity is in-tolerance.

5.6.1 Average Measured Value and Combined Uncertainty

As previously stated, the quantity of interest is the average length measurement corrected to
20 °C. In this analysis, the average length measurement at 20 °C is computed to be

X =10.003 mm - 0.000177 mm =10.0028 mm

with a combined uncertainty of 0.629 um with 24 degrees of freedom.

5.6.2 Measurement Process Errors and Uncertainties

The measurement process errors, distributions, uncertainties and degrees of freedom are
summarized in Table 5-4. The relative contributions of the measurement process uncertainties to
the overall uncertainty in the average length measurement are shown in Figure 5-2. The pareto
chart™ shows that the uncertainties due to repeatability, operator bias, and micrometer resolution
are the largest contributors to the 0.629 um combined uncertainty.

Table 5-4. Measurement Process Uncertainties for Micrometer Calibration

Error Containment Containment Error Standard Estimate | Deg. of
Source Limits Probability | Distribution | Uncertainty Type Freedom
Gage Block Bias| +0.18,-0.13 99.00 Lognormal | 0.042 um B 0
Repeatability 0.463 pm A 7
Micrometer +0.5 100.00 Uniform | 0.289 pm B ©
Resolution
Operator Bias +0.5 90.00 Normal 0.304 pm B 0
Environmental | ; 3 95.00 Normal | 0.063 um B ©
Factors

46 A Pareto (pronounced puh-RAY-toe) chart is a special type of bar chart where the values plotted are arranged in descending
order of importance. The chart is based on the Pareto principle, which states that when several factors affect a situation, a few
factors will account for most of the impact.
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Figure 5-2. Pareto Chart for Micrometer Calibration

5.6.3 Confidence Limits

The combined uncertainty and degrees of freedom can be used to compute confidence limits that
are expected to contain the true value, 1, with some specified confidence level or probability, p.
The confidence limits are expressed as

X tg 0l (5-19)

where the multiplier, t,»,, is the t-statistic and = 1- p.

In this analysis, we will use a 95% confidence level (i.e., p = 0.95). With a corresponding
t-statistic to 02524 = 2.0639, the confidence limits are computed to be

10.0028 mm £2.0639 x0.629 ym or 10.0028 mm+1.30 um.

5.6.4 In-tolerance Probability

The last step in this analysis example is to determine if the micrometer measurement of the
gage block 10 mm nominal length is within the £ 4 um manufacturer specified tolerance limits.
To do this, we must evaluate the micrometer bias, the gage block bias and the uncertainties in
these biases.

Recall from equation (5-1), the measured value X is defined by
X = Xirue T &x
where
Xwrue = true gage block length

& = total error in the length measurement.

The nominal gage block length, Xnom, s related to the true length by
Xnom = Xtrue * Eobias (5-20)
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where
&obias = bias in the gage block length.

The difference between the measured value and the nominal gage block length is defined as

0 = X—Xnom
= (Xtrue + & ) - (Xtrue + EGbias ) (5-21)
= &y ~ &Gbias

where ¢'is a measure of the micrometer bias, &upias. Substituting equation (5-3) into equation
(5-21), the uncertainty equation for gupias 1S

Usvbias — \/V3r (5x - 5Gbias) = \/V3r (5ran T EMres T Eop T 5env)
(5-22)

_ 2 2 2 2
= \/uran + Umres + Uop + Ueny

Replacing Uran in equation (5-22) with u, ., = 1.31, the combined uncertainty is computed to be

= \/(1.31)2 +(0.289)% +(0.304)% + (0.0626)* um
=+/1. pm = 1. wm
J1.896 1.377

u
EMbias

The degrees of freedom for the combined uncertainty is computed to be

4 4
u 1.377
Vit =7 x—2 :7x%:7x12z:8.5
Uy_ran (1.31 um)

where the value is rounded to the nearest whole number, 9.

The measurement results indicate that the average deviation from the gage block nominal length
is 0 =+2.8 um. The confidence limits for a single value of Jare expressed as

RS ST I (5-23)

For a 95% confidence level, 9259 = 2.2622 and the confidence limits for d(e.g., &mpias) are
computed to be

2.8 um=*2.2622x1.377 pm or 2.8 um+3.12 uym

Figure 5-3 shows the distribution for gupias relative to the manufacturer specification limits. The
shaded area depicts the probability that gupias falls outside of the micrometer specification limits.

There is a much higher probability that the micrometer bias is within the manufacturer
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specifications than outside them. However, the in-tolerance probability needs to be computed
and evaluated to decide whether or not the micrometer’s performance is acceptable for its
intended application.

f(&wbias)

-4 um 0 pm +4 um

} ®
+2.8 um

——

EMbias
Figure 5-3. Micrometer Bias Distribution

In this decision-making process, it is important to account for the fact that the observed deviation
from nominal, 6, is also affected by the bias in the gage block length, ggpias. Consequently, the
actual micrometer bias may be larger or smaller than ¢.

The value of &apias is unknown, but its uncertainty was estimated to be Ugpias = 0.0423 um.
This uncertainty is much smaller than the micrometer bias uncertainty, Uwpias = 1.377 pm.
Therefore, one might deduce that &gpias has a minor impact on 6. However, a small value for
Ucbias does not preclude a large value for ggpias.

To adequately determine micrometer in-tolerance probability, it is also necessary to estimate
Ecbias and the probability that ggpias is Within its specified tolerance limits. The calculation of
biases and in-tolerance probabilities is beyond the scope of this document. Readers are referred
to NASA Measurement Quality Assurance Handbook Annex 4 — Estimation and Evaluation of
Measurement Decision Risk.
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CHAPTER 6: MULTIVARIATE MEASUREMENTS

This chapter discusses the approach used to estimate the uncertainty of a quantity that is
computed from measurements of two or more attributes or parameters. The multivariate
uncertainty analysis procedure consists of the following steps:

Develop the Parameter Value Equation
Develop the Error Model

Develop the Uncertainty Model

Identify the Measurement Process Errors
Estimate Measurement Process Uncertainties
Compute Uncertainty Components

Account for Cross-Correlations

Combine Uncertainty Components

00N kW=

Report Analysis Results

The procedure for developing error models and uncertainty models from the parameter value
equation is presented. Identifying measurement process errors, estimating their uncertainties and
accounting for cross-correlations is also presented. The volume occupied by a cylinder obtained
from length and diameter measurements is used to illustrate the concepts and methods of
conducting a multivariate uncertainty analysis.

6.1  Develop the Parameter Value Equation

The parameter value equation is a mathematical relationship between the quantity of interest
(subject parameter) and the variables or quantities to be measured. The parameter value equation
is also referred to as the governing or system equation. For example, consider a case with three
measured variables or quantities, X, Y, Z

qa=1f(xy.2) (6-1)
where
q = subject parameter or quantity of interest
f = mathematical function that relates  to measured quantities X, y, and z.

6.1.1 Cylinder Volume Example

In this analysis example, a steel cylinder artifact with nominal design dimensions of 0.65 cm in
length by 1.40 cm in diameter is measured with a micrometer. The objective is to estimate the
uncertainty in the cylinder volume measurement.

The parameter value equation for the cylinder volume is given as

2
V- HL[g) (6-2)

where L and D are the cylinder length and diameter, respectively.
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From equation (6-2), we see that, to determine the cylinder volume, we need to measure the
length and diameter. The cylinder volume (i.e., parameter value) is then computed based on the
values obtained for the length and diameter.

6.2 Develop the Error Model

The error model provides a mathematical relationship between the total error in the quantity of
interest to the errors in the measured quantities. The error model is determined from the
parameter value equation using a first-order Taylor series approximation.*’

For example, the error model for & in terms of the error components &, & and &, is developed by
apply a first-order Taylor Series approximation to equation (6-1).

£q =Cy&x +Cyéy +C8; (6-3)

Note: For a multivariate measurement, errors in the measured quantities are
called error components.

The coefficients, cy, Cy, and C; are sensitivity coefficients that determine the relative contribution
of the error components to the total error. The sensitivity coefficients are defined as

_6f(x,y,z)_a_q ] _of(xy.2) &q . _af(x,y,z)_a_q

X x  ox Y oy oyt oz

Note: The sensitivity coefficients are constants computed at a specified set of
values for X, Y, and z. These may be measured values or other values that are
relevant to the measurement process being analyzed.

6.2.1 Cylinder Volume Example

Errors in the length and diameter measurements contribute to the overall error in the estimation
of the cylinder volume. In this example, the error model for the cylinder volume equation is
developed algebraically to illustrate how the sensitivity coefficients for the length and diameter
errors obtained in this manner compare to coefficients obtained using partial derivatives.

By definition,
V=V, +g
D=Dy+¢p
L=Ly+e
where

V = nominal or design volume
Do nominal or design diameter
Ly = nominal or design length

T Taylor Series, named after English mathematician Brook Taylor, allows the representation of a function as an infinite sum of
terms calculated from its derivatives at a specified value. This 1* order approximation is applicable to most measurement
scenarios encountered in testing and calibration. However, in the evaluation of stochastic processes, approximations may require
the inclusion of 2" order or higher terms.
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& = cylinder volume error
& = diameter measurement error
& length measurement error

Therefore, equation (6-2) can be expressed as

(D0+8D jz
Vot+s =7 (L0+5|_). (6-4)

- ,{@)2 (Lo +6L)—7{%j2 b (6-5)
(
(

The higher order terms, Log2 , 2DyépéL and & &, are considered to be small compared to the
D D

other first order terms. Neglecting these terms, the cylinder volume error equation can be
expressed in a simpler form.

T 2 2 T ~N2
T2 T 2 T T 2

== DiL, - =D, + = DyLyep + = Die 6-6
1 oLo 2 olo > oLoép 4 DoéL (6-6)

T T 2
=—D,Lyepn + —Dje
7 OLO D 4 0ocL

Rearranging equation (6-6), yields

2
&y :ﬂ(%j &L +7TL0%8D. (6-7)

The coefficients for g and &p in equation (6-7) are actually the partial derivatives of V with
respect to L and D.

v (Djz oV (D)
¢, =—=x|—| and cp=——=7L| =
oL 2
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Therefore, the cylinder volume error model can be expressed as
& = CLgL + CDgD (6-8)

where the sensitivity coefficients, | and Cp, determine the relative contribution of the errors in
length and diameter measurements to the total measurement error.

6.3  Develop the Uncertainty Model

As discussed in Chapter 2, the uncertainty in a quantity or variable is the square root of the
variable's mean square error or variance. In mathematical terms, this is expressed as

Ug = lvar(gq) . (6-9)

Applying the variance operator to equation (6-3) gives

Ug = \/V3r(gq) = \/mr(cxex +Cyey + ngz)

(6-10)
2,2
\/cxux +c2 uy +C Uy +2C,Cy Py UyUy + 2CyC, Py, Uy U, +2CyC, oy U U,

where pyy, px; and py; are the correlation coefficients for the errors in X, y and z.

6.3.1 Cylinder Volume EXAMPIE ........cooiieieieceee et

Applying the variance addition operator to equation (6-8), the uncertainty in the cylinder volume
can be expressed as

Wy = \/V3r (&) \/V3r(CLgL +Cpép)

= \/CLUL + CDUD + 2CLCDPLDULUD

(6-11)

where pip is the correlation coefficient for the length and diameter errors.

6.4 Identify Measurement Process Errors

As discussed in Chapter 2, measurement process errors are the basic elements of uncertainty
analysis. Once these fundamental error sources have been identified, we can begin to develop
uncertainty estimates.

6.4.1 Cylinder Volume Example
In this example, the measurement process error sources are:

1. Bias in the micrometer readings (bias).

2. Repeatability or random error resulting from different values obtained from
measurement to measurement (ran).

3. Resolution error due to the finite resolution of the micrometer readings (res).

4. Operator bias on the part of the measuring technician (op).
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5. Error resulting from any thermal or other correction due to a departure from
nominal environmental conditions (env).

The errors in length and diameter measurements, & and &, can be expressed in terms of their
constituent process errors.

& = ngias + gLran + gLres + gLop + gLenv (6'12)
and

gD = ngias T gDran + gDres + gDop T gDenv- (6'13)
For this example, the nominal or design specifications for the steel cylinder at 20 °C are
Length (Lp) = 0.65cm
Diameter (Dy) = 1.40 cm
Volume (Vo) = 1.0cc

and the measurement process specifications are

Micrometer Bias: + 0.1mm with 97.5% confidence
Digital Resolution: 0.1 mm

Ambient Temperature: 24 °C £ 2.5 °C with 95% confidence
Thermal Expansion Coefficient for Steel: 53%x10°/°C+0.5%10°/°C

Thermal Expansion Coefficient for Micrometer: 1.2 x 10°/°C+0.2 x 10°/°C

Repeat measurements of the cylinder length and diameter, collected in pairs, yielded the data
listed in Table 6-1.

Table 6-1. Offset from Nominal Values

Sample Length Offset Diameter Offset
Number (mm) (mm)

1 0.4 0.2

2 0.3 0.3

3 0.3 0.4

4 0.4 0.5

5 0.5 0.3

6 0.3 0.2

7 0.4 0.4

6.5 Estimate Measurement Process Uncertainties

The specification information and the data in Table 6-1 are used to estimate the process
uncertainties for the cylinder length and diameter measurements. The methods of uncertainty
estimation are summarized below.

ULbias, Upbias - Measurement bias uncertainty is determined heuristically from
micrometer tolerance limits and in-tolerance probabilities.

ULran, Upran - Repeatability uncertainty is determined statistically from
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measurement data.

ULres, Upres - Resolution uncertainty is determined heuristically from the
micrometer resolution specification and containment probability.

ULop, Upop - Operator bias uncertainty is determined heuristically based on the
micrometer resolution and a containment probability.

ULenv, Upenv - Environmental factors uncertainty is determined heuristically
from tolerances and in-tolerance probabilities for the environment
monitoring equipment.

6.5.1 Measurement Bias Uncertainty

Measurement bias can be considered to be a normally distributed error source. Therefore, the
uncertainty in the micrometer bias can be expressed in terms of the + 0.1 mm containment limits,

97.5% containment probability, and the inverse normal distribution function, @' (-)
0.1 mm
o' [(1+0.975)/2]

_ 0. mm
2.2414

Upjas =

=0.045 mm = 0.0045 cm.

The micrometer is used to measure cylinder length and diameter, so U pias = Uppias = 0-0045 cm.

6.5.2 Repeatability Uncertainty

As discussed in Chapter 3, repeatability uncertainty is equal to the standard deviation of the
sample data.

€x,ran X

where

Sy :\/L%(xi -x)’

n—1ig

and X; is the ith reading and the mean value of the sample is computed from
1
X=—(X + X+t X ).
n

In this example, the length measurements are recorded in offset units from the nominal length,
Lo. The mean of the offset values for the cylinder length is

(04+0.3+0.3+0.4+0.5+0.3+0.4) mm
7

I-offset =

- 2'67mm —0.37 mm = 0.037 cm
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and the differences between the measured offset values and the mean offset value are

Loftset, — Loftset = 0.4—0.37 =0.03 mm
Loffset, — Lofset = 0.3—0.37 =—0.07 mm
Loffset, — Lofset =0-3—0.37 =~0.07 mm
Loffset, — Loffset = 0-4—0.37 = 0.03 mm
Loftset, — Loftset =0.5—0.37=0.13 mm
Loffset, — Loftset =0-3—0.37 =—0.07 mm
Loffset, — Lofset = 0-4—0.37 = 0.03 mm.

The standard deviation is

\/(0.03)2 +(-0.07)" +(=0.07)" +(0.03)> +(0.13)* +(-0.07)> +(0.03)
Slofier =

6

= /0'0243 mm = 0.076 mm = 0.0076 cm.

Thus, the repeatability uncertainty for the cylinder length measurement is

UL ran = 0.0076 cm.

The mean or average cylinder length measurement is

E = LO +Eoffset
=(0.65+0.037) cm
=0.687 cm

and the repeatability uncertainty in the mean cylinder length is

0.0076

Ulran = T

=0.0029 cm.

mm

The mean length will be used to compute the cylinder volume, so Up,,, will be used in the

combined uncertainty estimate.

Similarly, the mean of the offset values for the cylinder diameter is
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_ (02+03+04+0.5+0.3+0.2+0.4)
Doftset = 7 mm

:%mm:o.33mm=0.033 cm

and the differences between the measured offset values and the mean offset value are

Doiset, — Doftset = 02— 0.33=—0.13 mm

Dyfiset, — Doffset = 0.3 —0.33 = ~0.03 mm
Dofiset, — Doffset = 0-4 —0.33 = 0.07 mm

Doftset, — Doftset = 0.5-0.33=0.17 mm
Doftset; — Doffset = 0-3—0.33 = ~0.03 mm

Doset, — Doftset = 0.2—0.33=-0.13 mm

Dotset, — Doftset = 0.4 —0.33 = 0.07 mm.

The standard deviation is

_ \/(—0.13)2 +(=0.03)" +(0.07)* +(0.17)” +(=0.03)* +(~0.13)* +(0.07)* -

6

= /0'06743 mm=0.11mm=0.011 cm.

Thus, repeatability uncertainty for the cylinder diameter measurement is

Upran = 0.011 cm.

The mean or average cylinder diameter measurement is

D= DO + I:_)offset
= (1.40 + 0.033) cm
=1.433 cm

and the repeatability uncertainty in the mean cylinder diameter is

0.011cm

UBran = T

The mean diameter will be used to compute the cylinder volume, so Ug,,, will be used in the

=0.0042 cm.

combined uncertainty estimate.
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6.5.3 Resolution Uncertainty

To estimate the resolution uncertainty, we note that the micrometer has a digital readout.
Therefore, the resolution error can be assumed to be uniformly distributed with + 0.05 mm
containment limits and 100% containment probability. Therefore, the resolution uncertainty is
computed to be

~ 0.05mm

u -
res \/g

Since the micrometer is used to measure cylinder length and diameter,

=0.029 mm =0.0029 cm

uLI’ES = uDres =0.0029 cm.

6.5.4 Operator Bias Uncertainty

Operator bias can be considered to be a normally distributed error source. To estimate operator
bias uncertainty, we will assume containment limits that are based on roughly half of the
resolution error with 90% containment probability. This results in an operator bias uncertainty
of

Uy = (05)(00Lem) __ 61030 cm.

"o '[(1+0.90)/2]

The same person measured cylinder length and diameter, so Ui o, = Upgy =0.0030 cm.

Note: Containment limits for the operator bias are not necessarily based on
resolution error. Any appropriate knowledge about operator bias can be used to
develop containment limits and confidence levels.

6.5.5 Environmental Factors Uncertainty

We are interested in determining the uncertainty in the length and diameter measurements
resulting from temperature effects. Therefore, we must consider the thermal expansion of the
cylinder and the micrometer, as well as the uncertainty in the environmental temperature
measurement and the uncertainty in the expansion coefficients.**

The effect of temperature deviation from 20 °C on the measured cylinder length is

AL =Lo x (ac— om) x AT (6-14)
where
o = cylinder expansion coefficient = 5.3 x 10°%/°C
om = micrometer expansion coefficient = 1.2 x 10°%/°C
AT = ambient temperature — reference temperature = 24 °C —20 °C = 4 °C
Lo = nominal cylinder length = 0.65 cm.

8 This analysis is similar to the environmental factors error model developed in Chapter 5, Section 5.4.5.
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Similarly, the effect of temperature deviation from 20 °C on the measured cylinder diameter is
AD =Dg x (ac — am) x AT (6-15)
where Dy = nominal cylinder diameter = 1.40 cm.

The length change error is expressed as

EAL = CLiEq, T CL28qy, T CL3EAT (6-16)
where
OAL OAL OAL
c,,=—=LAT, ¢, =——=-LyAT and ¢ ,=——= . — Ay ) -
L= ) Lo L2 dar, Lo L3 = AT Lo (e —am)

The diameter change error is expressed as

€AD = CD1€g, T D28y, T CD3EAT (6-17)
where
OAD OAD O0AD
Cpi = =DyAT, Cp, = =-DyAT and Ccp;=——=Dy(a. — ).
D1 aac 0 D2 aam 0 D3 OAT 0( c m)

Applying the variance operator to equation (6-16) we have

VaI‘(SAL) = Var<c|_15ac + C|_28am + CL3EAT )
= Cﬁl var(gy, )+ CEZ var(gg )+ CE3 var(eat ) +2€ 1€ o cov (Eac »Eay, ) (6-18)

+ 2C|_1C|_3 cov (Eac »EAT )+ 2C|_20|_3 COV(&'am S EAT )

From Axiom 2, the uncertainty in the length change error can be expressed as

2 2 2 2 2 2
CLiUu, +Clou.  +C3u. _ +2CiCrp, . U Ug
277 277 EAT A “am “ac “om
UaL = ¢ m (6-19)

+ 2CL1CL3p8aC JEAT ué‘ac ugAT + 2CL2CL3p8am JEAT ué‘am ugAT

No correlations should exist between the expansion coefficient errors, &, and &, , or between

the temperature error, &7, and the expansion coefficient errors. Therefore,

=0 =0 =0
pgac, ’ pgac sEAT ’ pgam SEAT

and the uncertainty in the length change error can be expressed as
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22 2 2 2 2
UaL = \/cLlug +Clous  +C3ul . (6-20)
ac am AT

Similarly, the uncertainty in the diameter change error can be expressed as

2 .2 2 2 2 2
UAD :\/chu'g +CpoU,  +Cpsu . (6-21)
oc om AT

The appropriate probability distribution for the temperature error and expansion coefficient
errors is the normal distribution. Therefore, the associated uncertainties can be estimated from
the containment limits, containment probability and the inverse normal distribution function. In
this analysis, we will use a 95% containment probability for all three error sources.

The uncertainty in the temperature measurement error is expressed in terms of £ 2.5 °C
containment limits and 95% containment probability.

2.5°C 2.5°C
U, = =

exr 1 = =1.276°C
@ [(1+0.95)/2] 1.9600

Note: In this example, only the error resulting from the temperature measuring device
is considered. However, other error sources resulting from variation in the room
temperature and in the cylinder and micrometer temperatures during the measurement
process may also need to be considered.

The uncertainty in the cylinder expansion coefficient is estimated from + 0.5 x 10°/°C
containment limits and 95% containment probability.

-6 /0o -6 /o
0, _ 0.5x107°/°C _ 0.5x107°/°C _ oo 1076 /oc
el (1 + 0.95} 1.9600

2

The uncertainty in the micrometer expansion coefficient is estimated from + 0.2 x 10°%/°C
containment limits and 95% containment probability.

-6 /o -6 /o
0, :0.2><10 /C:0.2><10 /C:O.102x10_6/°C
om (D_l (l + 0.95) 1.9600

2

The sensitivity coefficients for equation (6-20) are

Cly = 065cm x4°C = 2.6cm-°C
b = —0.65ecmx4°C = —2.6cm-°C
cs = 0.65cmx(53-12)x10°%°C = 2.67 x 10°® cm/°C

and the uncertainty in the cylinder length change error is computed to be
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Uy = \/(2.6)2 x(0.255x107° )2 +(-2.6)° x(0.102x10°° )2 +(2.67x107° )2 x(1.276)" em
=v1.21x107"" ¢cm =3.48 x 10 %cm.

The uncertainty in the cylinder length due to environmental factors error is
ULeny = Un, =3.48x10° cm.

The sensitivity coefficients for equation (6-21) are

o1 = 140cmx4°C = 5.6 cm-°C
Cpp = —-140cmx4°C = —5.6cm-°C
Cos = 1.40cmx(5.3—1.2)x10°°C = 5.74 x 10° cm/°C

and the uncertainty in the cylinder diameter change error is computed to be

Upp = \/(5.6)2 x(0.255x 10‘6)2 +(=5.6)" x(0.102x 10‘6)2 +(5.74x107° )2 x(1.276)* cm

=+/5.60x10""! ¢cm

=7.48x10 %cm.
The uncertainty in the cylinder diameter due to environmental factors error is
Upeny = Upp = 7-48 x107° cm.
6.6  Compute Uncertainty Components

Applying the variance operator to equation (6-12), the uncertainty in the average cylinder length
measurement can be expressed as

2 2 2 2 2
U = \[UPbias + UZian + Ures + Ubop + Ueny - (6-22)

Similarly, applying the variance operator to equation (6-13) gives the following expression for
the uncertainty in the average cylinder diameter measurement

2 2 2 2 2
ulj = \/quias + u|5ran + uDI’ES + uDOp + uDenv . (6-23)

Note: There are no terms correlating process uncertainties within each
component expression because the length measurement process errors are
independent of one another, as are the diameter measurement process errors.

The uncertainty in the average length measurement is computed to be
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ur = \/(0.0045 em)” +(0.0029 cm)” +(0.0029 cm)” +(0.0030 cm)” +(3.48x107° cm)2

—\4.61x1075 ¢m = 0.0068 cm

The uncertainty in the average diameter measurement is computed to be

Ug = \/(0.0045 em)” +(0.0042 cm)” +(0.0029 cm)” +(0.0030 cm)” + (7.48 107 cm)2

= 1/0.000055 cm? = 0.0074 cm

The degrees of freedom for the component uncertainties are computed using the Welch-
Satterthwaite formula

ut
— = L -
145 7 L ) A 2 (6-24)
U} bias 4 “Lran +ques 4 Lop +ULenv
Vibias VYiran Yires VYiop Vienv
and
4
u7
_ D
Vg = (6-25)

4 4 4 4 4
Uppi Us u Up u
Dbias + Dran + Dres + op + Denv
VDbias VYDran VDres VDop VDenv

The degrees of freedom for all of the process uncertainties were assumed to be infinite, except
for the repeatability uncertainties, U, and Ug,,,, which have degrees of freedom equal to 6

(i.e., sample size minus one). Therefore, the degrees of freedom for the component uncertainties
are computed to be

4 0.0029 cm

Lran

4 4
ug : m
VE = Vipan X—— :6x(—000680 j =181.4

4 4
u7
D _¢, (0.0074 cm] 578

Vs = VR X
D~ "Dran ™ 4 0.0042 cm
Dran

where the degrees of freedom are reported to the nearest whole numbers, v =181 and vz =358.

6.7  Account for Cross-Correlations

Before we combine the length and diameter measurement uncertainties, we must consider if
there are any cross-correlations between the length and diameter measurement process errors.
First, we need to write an equation that expresses the correlation coefficient, pp, for the
component errors, & and &p, in terms of the cross-correlation coefficients for the process errors
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n Nj
Uy U 6-26
U Up El j{:lle’DJ LiYDj ( )

PLD =

where pypj is the cross-correlation coefficient between the & and &pj process errors for the
length and diameter components, respectively.

The cross-correlation coefficients can range from minus one to plus one. A positive coefficient
applies when the error sources are directly related. A negative coefficient is used when the error
sources are inversely related.

Second, let us review what we know about the cylinder measurement process.

1. Both length and diameter are measured using the same device (i.e., a micrometer).
2. All measurements are made by the same person (operator).

3. All measurements were made in the same measuring environment.

Given this knowledge, we can assert that the following process errors are cross-correlated
between the length and diameter components:

e Measurement Bias - & pias and &ppias
e Operator Bias - & op and &pop

e Environmental Factors - & env and &peny
Therefore, equation (6-26) becomes

1

LUp

PLD = 4 (prias,DbiasuLbiasuDbias + PLop,DopYLopUDop pLenv,DenvuLenquenv) . (6-27)

6.7.1 Measurement Biases

Since the same device is used to measure the cylinder length and diameter, the micrometer bias
for these measurements is the same. In this instance, the cross-correlation coefficient o pias pbias
is equal to 1.0.

Note: The micrometer bias may vary slightly over its range. However, in this
analysis we assume that this variation is negligible.

6.7.2 Operator Biases

Although the same operator makes both length and diameter measurements, human
inconsistency prevents us from assigning a correlation coefficient equal to 1.0. However, we
also know that the correlation coefficient should not be equal to zero either. Given that this is all
we can say from heuristic considerations, we will set the cross-correlation coefficient between
length and diameter operator biases pLop,pop €qual to 0.5.
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6.7.3 Environmental Factors Errors

As shown in Section 6.5.5, the length and diameter change errors, & and &ap, are functions of

the expansion coefficient and temperature change errors. Consequently, an increase or decrease
in &y will result in a proportionate increase or decrease in gap. Therefore, the cross-correlation
coefficient o env,penvs 18 €qual to 1.0.

The correlation coefficient p p can now be expressed as

1
PLD = e (ULbiasquias +0.5ULopUpop + uLenquenv) . (6-28)
LYD

6.8  Combine Uncertainty Components

The equation for the cylinder volume uncertainty is obtained by substituting equation (6-28) into
equation (6-11)

2,2, 2,2
U = \/C[U[ +CpUp + ZC[C[S (uLbiasquias + 0-SuLopuDop + uLenquenv) (6-29)
where the sensitivity coefficients are

— 2 2
cLG(%j =3.14159(@j =1.613cm?

and

Cp = nf[%j = 3.14159 % 0.687 cmx(%j ~1.547 cm?.

The cylinder volume uncertainty is computed to be

(1613 cm” )2 (0.0068 cm)” +(1.547 cm’ )2 (0.0074 cm)’

Uy =
+2(1.613 em?)(1.547 cmz)[(0.0045 em)’ +0.5(0.003 cm)? +(3.48 cm ) (7.48 cm ) x 10‘12}

=\/(1.20 em® +1.31cm® +1.24 cm6)x10‘4

=+/3.75 x10%2cm> = 0.0194 cm’.

The degrees of freedom for the cylinder volume uncertainty are estimated using the Welch-
Satterthwaite formula

R e (6-30)
CiUi CsURx
LYL + D”D
oo Vb

where Uy is the total uncertainty computed without cross-correlations between the uncertainty
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components Ur and Ug.*

2 2
Uys = Jc2u? +cBud = \/(1.613 em? x0.0068 cm)” + (1.547 cm® x0.0074 cm

= /0.00012 cm® +0.00013 cm® = +/0.00025 cm® = 0.0158 cm’.

The degrees of freedom for the cylinder volume uncertainty are computed to be

(0.0158 cm3)4
vy = ) =165.7
(1.613 cm? x0.0068 cm) (1.547 cm? x0.0074 cm)

+
181 58

and are reported as the nearest whole number, v; =166.

6.9  Report Analysis Results

We have accounted for all uncertainties considered to be relevant to the cylinder volume
measurement process and can now evaluate the results of our analysis. In this case, we are
interested in the uncertainty in the cylinder volume computed from the average length and
diameter measurements corrected to 20 °C.

6.9.1 Cylinder Volume and Combined Uncertainty

The cylinder volume is computed using the average cylinder length and diameter corrected to
20 °C. The average cylinder length and diameter at 24 °C were computed to be 0.687 cm and
1.433 cm, respectively. Equations (6-14) and (6-15) can be used to estimate the effect of
temperature deviation from 20 °C on the measured cylinder length and diameter.

AL = 0.65cmx (5.3 - 1.2) 10%/°C x 4 °C
= 1.07x 10° cm

AD = 1.40 cm x (5.3 — 1.2) 10%/°C x 4 °C
= 230 x 107 cm

Both the length and diameter expansion are considered to be insignificant for this analysis.

Therefore, the cylinder volume can be computed using the uncorrected average length and
diameter.

_.2
vzﬁt(%j (6-31)

where L =0.687 cm and D=1.433 cm. The cylinder volume is computed to be

4> While the Welch-Satterthwaite formula is applicable for statistically independent, normally distributed error sources it can
usually be thought of as a fair approximation in cases where error sources are not statistically independent.
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with an uncertainty of Uy =0.019 cm’ and 166 degrees of freedom.

V = 3.14159 x 0.687 x (1.433/2)* = 1.108 cm’

6.9.2 Measurement Process Errors and Uncertainties

The measurement process errors, corresponding distributions, uncertainties and degrees of
freedom are summarized in Table 6-2.

Table 6-2. Measurement Process Uncertainties for Cylinder Volume Measurement

Estimated
Error Error Error Standard Deg. [Sensitivity] Component
Source Limits |Containment| Error | Uncertainty | Estimate| of Coeff. | Uncertainty
(cm) Probability |Distribution (cm) Type | Freed. (cm?) (cm?)
Elbias +0.01 97.5% Normal 0.0045 B 0 1.613 0.0073
EDbias +0.01 97.5% Normal 0.0045 B 0 1.547 0.0070
Elran 0.0029 A 6 1.613 0.0047
EBran 0.0042 A 6 1.547 0.0065
Elres +0.01 100% Uniform 0.0029 B 0 1.613 0.0047
Ebres +0.01 100% Uniform 0.0029 B 0 1.547 0.0045
ELop +0.01 90% Normal 0.0030 B 0 1.613 0.0048
Ebop +0.01 90% Normal 0.0030 B 0 1.547 0.0046
ELenv Normal | 3.48 x 10 B 0 1.613 | 5.61x10°
Ebeny Normal | 7.48 x 10 B 0 1.547 | 1.16 x 107

The component uncertainty is the product of the standard uncertainty and the sensitivity
coefficient. The relative contributions of the component uncertainties to the overall cylinder
volume uncertainty are shown in Figure 6-1. Recall from equation (6-29), the uncertainty in the
cylinder volume accounts for cross-correlations between & pias and &ppias, &Lop and Epop, and &Leny
and &peny. Consequently, measurement bias uncertainty (i.e., micrometer bias uncertainty) for
length and diameter are the largest contributors to the uncertainty in cylinder volume, followed
by operator bias and diameter repeatability.
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Figure 6-1. Pareto Chart for Cylinder Volume Measurement

6.9.3 Confidence Limits

The combined uncertainty and degrees of freedom can be used to compute confidence limits that
are expected to contain the true cylinder volume with some specified confidence level or
probability, p. The confidence limits are expressed as

Vitty U7 (6-32)

where the multiplier, t,»,, is the t-statistic and « = 1- p.

For this analysis, let us assume that we want 99% confidence limits (i.e., p = 0.99). The
corresponding t-statistic is o 05,166 = 2.6 and the confidence limits are computed to be

1.108 cm> £2.6x0.019 cm> or 1.108 cm® +0.049 cm° .

6.9.3.1 Single Cylinder Volume Measurement
To compute the confidence limits for the cylinder volume determined from a single pair of
length and diameter measurements, UL ran and U5, ran Must be replaced with Uj_ran and Up ran in

equations (6-22) and (6-23), respectively.

The uncertainty components, U, and Up are then computed to be

2
u = \/(0.0045 em)” +(0.0076 cm)” + (0.0029 cm)” + (0.0030 cm)” + (3.48 em x 10°°

- \/9.54 %107 cm? = 0.0098 cm
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2
up = \/(0.0045 em)? +(0.011 em)” +(0.0029 em)” +(0.0030 cm)” +(7.48 cm x 107

—\1.59x10%cm? = 0.0126 cm

The associated degrees of freedom for these uncertainty components are similarly computed by
substituting UL ran and U5 ran with Uy ran and Up ran, respectively.

4 4
V= Vi XZ_L:6X(W] =16.6

; 0.0076 cm

ran
u 0.0126cm )’

Vo = Vo X —>— = 6% SR 2103
Sran 0.0110 cm

The degrees of are reported to the nearest whole numbers, v| =17 and vp =10.

The cylinder volume uncertainty is then computed by substituting U and Up for U and Ug in
equation (6-29).

(1613 cm? )2 (0.0098 cm)” + (1.547 om” )2 (0.0126 cm)’
uv =

+2(1.613 em?)(1.547 ecm? )| (0.0045 cm)? +0.5(0.003 cm)* + (3.48 cm) (7.48 cm) x 10712
(

- \/(2.48 cm® +3.80 cm® +1.24 cm6) x107 = /752 x102em® = 0.027 cm?.

The corresponding degrees of freedom are computed using the Welch Satterthwaite formula

4
V= Y

T4 4 4 4
Cc,u ChU
LY | Colp
Vi Vb

where Uy« is the cylinder volume uncertainty computed without cross-correlations.
W+ =y iU +ciud

2 2 2 2
= (1.613cm x0.0098cm) +(1.547 cm ><0.0126cm)
=0.025cm?>.

The degrees of freedom for the cylinder volume uncertainty are computed to be
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(0.025 cm3)4
vy = 2 T =218.
(1.613 cm? x0.0098 cm) (1.547 em? x0.0126 cm)

+
17 10

and are reported as the nearest whole number, 1, =22.
The confidence limits, relative to a single cylinder volume measurement are

Vitty oy - (6-33)
For a 99% confidence level, 1900522 = 2.82 and the confidence limits are computed to be

1.108 cm> +2.82 % 0.027 cm> or 1.108 cm® + 0.076 cm®.
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CHAPTER 7: MEASUREMENT SYSTEMS

7.0 General

This chapter discusses the approach used to estimate the uncertainty of a quantity (or subject
parameter) that is measured with a system comprised of component modules arranged in series.
The analysis process traces system uncertainty module by module from system input to system
output.

Subject
Parameter
Value
X Y Y Y Y
> M, L M, M, Pl M,
Sensor Interfacel Low Pass Filter Interface2
Measured
Value
Y Y Y Y Y
L M S M, > M, —» M, >
Amplifier Interface3 A/D Converter Data Processor

Figure 7-1. Block Diagram for Example System

System uncertainty analysis follows a structured procedure. This is necessary because the output
from any given module of a system may comprise the input to another module or modules.

Since each module's output carries with it an element of uncertainty, this means that the same
uncertainty may be present at the input of some other module.

7.1  System Analysis Procedure

In analyzing linear measurement systems, we develop output equations for each module. From
these equations, we identify sources of error for each module. We then estimate the uncertainty
in each error source and compute the combined uncertainty in the output of each module. In
doing this, we make certain that the uncertainty in the output of each module is included in the
input to the succeeding module in the system.

In this respect, the system analysis results are computed somewhat differently than those
previously discussed for direct measurements and multivariate measurements. The general
system analysis procedure consists of the following steps:

Develop the System Model

Define the System Input

Define the System Modules

Identify Module Error Sources
Develop Module Error Models
Develop Module Uncertainty Models
Estimate Module Uncertainties

AT A ol o
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8. Compute System Output Uncertainty
9. Report Analysis Results

The processes for developing a system model and the corresponding module output equations are
presented. Processes for identifying measurement process errors, estimating their uncertainties
and accounting for correlations are presented using a load cell measurement system for
illustration.

7.2  Develop the System Model

The first step in the system analysis procedure is to develop a model that describes the modules
involved in processing the measurement of interest (i.e., subject parameter). The model should
include a diagram depicting the modules of the system and their inputs and outputs and identify
the hardware and software used.

The system diagram can be a useful guide for developing the equations that describe the module
outputs in terms of inputs and identify the parameters that characterize these processes. It may
also be beneficial to develop a functional model that relates component errors to the overall
system output error.

7.2.1 Load Cell Measurement System

In this example, a load cell is calibrated using a weight standard, as illustrated in Figure 7-2.
The calibration weight is extended from the load cell via a monofilament line. The DC voltage
output from the amplifier module is measured with a digital multimeter (DMM). Three repeat
measurements of DC voltage are obtained by adding and removing the calibration weight.

8062A | Readout
DMM | Device

Model TMO-2
Amplifier/Conditioner

MDB-5-T
Load Cell

Calibration
Weight

Figure 7-2. Load Cell Calibration Setup

The purpose of this analysis is to estimate and report the total uncertainty in the average DC
voltage obtained via the load cell calibration process. For the load cell system analysis, we need
to define the mathematical relationship between the quantity being investigated and its

79



component variables. In this case, measurement is made through a linear sequence of stages as
shown in Figure 7-3.

Calibration Measured
Weight Voltage
X Y, Y, Y,
—> M, > M, > M, >
Load Cell Amplifier/Signal Digital
Conditioner Multimeter

Figure 7-3. Block Diagram of Load Cell Measurement System

The output, Y, from any given module of the system may comprise the input of another module
or modules. Since each module's output carries with it an element of uncertainty, then this
uncertainty may be present at the input of a subsequent module.

7.3 Define the System Input

The second step in the system analysis procedure is to define the quantity or parameter value that
is sought through measurement.”’ The nominal (or expected) input value, measurement area and
units are specified during this step.

7.3.1 Load Cell Measurement System

As previously indicated, a weight standard is used to calibrate the load cell measurement system.
The nominal value of the calibration weight is stated to be 3 1b¢. In this case, the nominal value
for the system input is 3, the input measurement area is force and the units are lby.

7.4 Define the System Modules

Once a sufficiently detailed block diagram has been established, the equations that relate the
inputs and outputs for each module can be developed. The basic approach is to clearly describe
the physical processes that transform the system input along its path from module to module.

7.4.1 Load Cell Module (M)

The first module in the load cell measurement system consists of an MDB-5-T load cell
manufactured by Transducer Techniques, Inc. This load cell is a passive sensor that requires an
external voltage source and has a rated output of 2 mV/V nominal for loads up to 5 1by.
Therefore, the nominal sensitivity of the load cell is 0.4 mV/V/lby.

The basic transfer function for the load cell module is given in equation (7-1).

LCOut :W X S X Vex (7‘1)
where

LCout = Load cell output, mV
Applied load or weight, Ibg

S = Load cell sensitivity, mV/V/lbg
Vex = Excitation voltage, V

=
I

%0 j.e., the input stimulus to the measurement system.
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7.4.2  Amplifier Module (M)

The second system module is a TMO-2 Amplifier, manufactured by Transducer Techniques Inc.
This module amplifies the mV output from the load cell module to V. The nominal amplifier
gain is the ratio of the maximum amplifier output to the maximum load cell output. The basic
transfer function for this module is given in equation (7-2).

Ampoyt = LCout x G (7-2)
where
Ampou = Amplifier Output, V
G Amplifier Gain, V/mV

7.4.3 Digital Multimeter Module (M3)

An 8602A digital multimeter, manufactured by Fluke, converts the analog output signal from the
amplifier module to a digital signal and displays it on a readout device. The basic transfer
function for this module is expressed in equation (7-3).

DM MOut = AmpOut (7'3)
where
DMMog,: = Digital multimeter output, V

75 Identify Module Error Sources

The next analysis step is to evaluate module functions or parameters to identify errors that may
contribute to the total module output error.

In the analysis of the load cell measurement system, error in the mass of the calibration weight,
errors intrinsic to the measurement equipment used, and other process errors are considered. A
list of applicable error sources is given below.

o Bias in the value of the calibration weight

e Errors associated with the MDB-5-T Load Cell

e Errors associated with the Model TMO-2 Amplifier
o Errors associated with the 8062A Digital Multimeter
o Error associated with the repeat measurements taken

7.5.1 Load Cell Module (M,)
For this module, the following error sources must be considered:

o Bias in the value of the calibration weight
o Excitation voltage error
e Load cell error

Manufacturer's published specifications for the load cell’" are listed in Table 7-1. The following
sources of load cell error will be included:

5! Specifications obtained from www.ttloadcells.com/mdb-load-cell.cfim
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o Nonlinearity

o Hysteresis

e Noise

e Zero balance

o Temperature effect on output
o Temperature effect on zero

Table 7-1. MDB-5-T Load Cell Specifications

Specification Value Units
Maximum Applied Load 5 1bs
Rated Output (R.O.) 2 mV/V
Nonlinearity 0.05% of R.O. mV/V
Hysteresis 0.05% of R.O. mV/V
Noise (Nonrepeatability) 0.05% of R.O. mV/V
Zero Balance 1.0% of R.O. mV/V
Compensated Temp. Range 60 to 160 °F
Temperature Effect on Output 0.005% of Load/°F 1bs/°F
Temperature Effect on Zero 0.005% of R.O./°F | mV/V/°F
Recommended Excitation Voltage 10 VDC

When developing an equation for the load cell module, the impact of the error sources on the
output must be considered. Each of the error sources listed above are discussed briefly to
determine how they should be accounted for in the load cell output equation.

7.5.1.1 Calibration Weight

The 3 1b¢ calibration weight has specified error limits of = 0.003 lbs. In this analysis, these limits
are interpreted to represent 99 % confidence limits. The associated error distribution is
characterized by the normal distribution.

7.5.1.2  Excitation Voltage

Since the MDB-5-T load cell is a passive sensor, it requires an external power supply. The
TMO-2 Amplifier provides a regulated 8 VDC excitation power supply with £ 0.25 V error
limits. The excitation voltage error limits are interpreted to be 95% confidence limits for a
normally distributed error.

7.5.1.3  Nonlinearity.

Nonlinearity is a measure of the deviation of the actual input-to-output performance of the device
from an ideal linear relationship. Nonlinearity error is fixed at any given input, but varies with
magnitude and sign over a range of inputs. Therefore, it is considered to be a random error that
is normally distributed. The manufacturer specification limits of £ 0.05% of the rated output are
interpreted to be a 95% confidence limits.

7.5.1.4  Hysteresis

Hysteresis indicates that the output of the device is dependent upon the direction and magnitude
by which the input is changed. At any input value, hysteresis can be expressed as the difference
between the ascending and descending outputs. Hysteresis error is fixed at any given input, but
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varies with magnitude and sign over a range of inputs. Therefore, it is considered to be a random
error that is normally distributed. The manufacturer specification limits of + 0.05% of the rated
output are interpreted to be a 95% confidence limits.

7.5.1.5 Noise

Nonrepeatability or random error intrinsic to the device, which causes the output to vary from
observation to observation for a constant input is usually specified as noise. This error source
varies with magnitude and sign over a range of inputs and is normally distributed. The
manufacturer specification limits of £ 0.05% of the rated output are interpreted to be 95%
confidence limits.

7.5.1.6  Zero Balance

Zero balance refers to the zero offset that occurs if the device exhibits a non-zero output for a
zero input. Although zero offset error can be reduced by adjustment, there is no way to
completely eliminate it because we do not know the true value of the offset. The manufacturer
specification limits of + 1% of the rated output are interpreted to be 95% confidence limits for a
normally distributed error.

7.5.1.7  Temperature Effects

The load cell is part of a tension testing machine, which heats up during use. The load cell
temperature is monitored and recorded during the testing process and observed to increase from
75 °F to 85 °F. The load cell is subjected to the same temperature change during calibration.

Temperature can affect both the offset and sensitivity of the load cell. To establish these effects,
the device is typically tested at several temperatures within its operating range and the effects on
zero and sensitivity or output are observed.

Although the load cell is used within its compensated temperature range, the manufacturer
acknowledges that some compensation error exists, hence the stated specifications for
Temperature Effect on Output and Temperature Effect on Zero.

The temperature effect on output of 0.005% load/°F specified by the manufacturer is equivalent
to 0.00015 Ibg/°F for an applied load of 3 1b;. The temperature effect on zero and the
temperature effect on output specifications are interpreted to be a 95% confidence limits for
normally distributed errors.

A 10 °F temperature change is used in this analysis to account for temperature compensation
error. The temperature measurement error limits are + 2 °F with an associated 99% confidence
level. The temperature error is assumed to be normally distributed.

7.5.2  Amplifier Module (M)
For this module, the following error sources must be considered:

e Load cell output error
o Amplifier error
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The manufacturer's published specifications for the amplifier™” are listed in Table 7-2. For a
recommended applied excitation voltage of 10 VDC, the MDB-5-T load cell has a maximum
rated output of 20 mV. Therefore, the TMO-2 amplifier has a nominal gain of 10V/20 mV or
0.5 V/mV.

Table 7-2. TMO-2 Amplifier Specifications

Specification Value Units
Maximum Output Voltage 10 \Y
Gain (nominal) 0.5 V/mV
Gain Accuracy 0.05% of Full Scale mV
Gain Stability 0.01% mV
Nonlinearity 0.01% mV
Noise and Ripple <3 mV
Balance Stability 0.2% mV
Temperature Coefficient 0.02% of F.S./°C mV/°C

Given the above specifications, the following sources of amplifier error are applicable to this
analysis:

e (Gain accuracy

e Gain stability (or Instability)
o Nonlinearity

e Noise

o Balance stability

o Temperature coefficient

7.5.2.1  Gain Accuracy

Gain is the ratio of the amplifier output signal voltage to the input signal voltage. In this case,
the TMO-2 amplifier has a nominal gain of 10V/20 mV or 0.5 V/mV. The manufacturer
specified accuracy limits of = 0.05% of full scale are interpreted to be 95% confidence limits for
a normally distributed error.

7.5.2.2  Gain Stability

If the amplifier voltage gain is represented by Gy, its input resistance by R and its feedback
resistance by Ry, then oscillations are possible when

RGy _
R+Rf

These oscillations appear as an instability in the amplifier gain. The manufacturer specification
of 0.01% is interpreted to be £ 0.01% of full scale. These limits are assumed to represent 95%
confidence limits for a normally distributed error.

52 Specifications obtained from www.ttloadcells.com/TMO-2.cfm
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7.5.2.3  Nonlinearity

As with the load cell module, actual amplifier response may depart from the ideal or assumed
output versus input curve. Nonlinearity errors are point-by-point differences in actual versus
expected response over the range of input signal levels. The manufacturer specification of
0.01% 1s interpreted to be + 0.01% of full scale and representative of 95% confidence limits for a
normally distributed errors.

7.5.2.4 Noise

Noise generated within the amplifier that enters the signal path causes errors in the amplifier
output. Since noise is directly related to gain, manufacturers usually specify noise error in
absolute units of Volts RMS or Volts peak-to-peak. The manufacturer specification of 3 mV
peak-to-peak is estimated to be + 1.5 mV limits that are equivalent to 99% confidence limits for
a normally distributed error.

7.5.2.5  Balance Stability

Balance stability, or instability, refers to a non-zero amplifier output exhibited for a zero input.
Although balance instability can be reduced by adjustment, there is no way to completely
eliminate it because we do not know the true value of the zero offset. The manufacturer
specification of + 0.2% is interpreted to be + 0.2% of full scale. These limits are also interpreted
to be 95% confidence limits for a normally distributed error.

7.5.2.6  Temperature Coefficient

Both the balance (or zero) and gain are affected by temperature. Manufacturers generally state
this as a temperature coefficient (or Tempco) in terms of percent change or full scale per degree.
The manufacturer specification limits of + 0.02% of full scale/°C are interpreted to be 95%
confidence limits for a normally distributed error.

To quantify the effect of temperature, however, we must establish the expected temperature
change and use this with the temperature coefficient to compute expected variations. As with the
load cell module, the impact of temperature correction error is estimated using a temperature
range of 5.6 °C (10 °F) with measurement error limits of £ 1.1 °C with an associated confidence
level of 99% for a normally distributed error.

7.5.3 Digital Multimeter Module (M3)

Manufacturer's published specifications for the DC voltage function of the digital multimeter™
are listed in Table 7-3. In this module, key error sources include:

o Amplifier output error
e DC voltmeter accuracy

DC voltmeter digital resolution

Repeat measurements error

53 Specifications from 8062A Instruction Manual downloaded from www.fluke.com
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Table 7-3. 8062A DC Voltage Specifications

Specification Value Units
200 mV Range Resolution 0.01 mV
200 mV Range Accuracy 0.05% of Reading + 2 digits mV
2 V Range Resolution 0.1 mV
2 V Range Accuracy 0.05% of Reading + 2 digits mV
20 V Range Resolution 1 mV
20 V Range Accuracy 0.07% of Reading + 2 digits mV

7.5.3.1

The overall accuracy of the DC Voltage reading for a 20 V range is specified as + (0.07% of
reading + 2 digits). These specification limits are interpreted to be 95% confidence limits for a
normally distributed error.

DC Voltage Accuracy.

7.5.3.2

The digital resolution for the 20 V DC range is specified as 1 mV. Since this is a digital display,
the resolution error is uniformly distributed. Therefore, the resolution error limits + 0.5 mV are
interpreted to be the minimum 100% containment or bounding limits.

Digital Resolution.

7.5.3.3

Random error resulting from repeat measurements can result from various physical phenomena
such as temperature variation or the act of removing and re-suspending the calibration weight
multiple times. Repeatability uncertainty will be estimated using the data listed in Table 7-4.

Repeatability.

Table 7-4. DC Voltage Readings

Offset from
Measured .
Repeat DC Voltace Nominal
Measurement (V) g DC Voltage
V)
1 4.856 0.056
2 4.861 0.061
3 4.860 0.060

7.6  Develop Module Error Models

The next analysis step is to develop an error model for each module. In most instances, the
module output is a function of several variables. Therefore, the error model must be developed
using a multivariate analysis approach.

As discussed in Chapter 6, the error model for a multivariate parameter q = f(X,y,z) is expressed
as
Eq =Cyéx +Cy&y +Cy&5,

where Cy, Cy, and C; are sensitivity coefficients that determine the relative contribution of the
errors in X, Y and Z to the total error in . The sensitivity coefficients are defined as
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For the load cell measurement system, equations (7-1) through (7-3) provide the basis for the
development of the module error models.

7.6.1 Load Cell Module (M,)

The load cell output equation (7-1) must be modified before the associated error model can be
developed. It is a good practice to first assign names to the relevant module error sources and
other parameters. The load cell error source and parameter names, descriptions, nominal values,
error limits and confidence levels are listed in Table 7-5.

Table 7-5. Parameters used in Modified Load Cell Module Equation

Parameter Description Nominal or Errqr Percent
Name Mean Value Limits Confid.
Wec Calibration Weight or Load 3 Ibs + 0.003 1bs 99
S Load Cell Sensitivity 0.4 mV/V/Ib¢
NL Nonlinearity 0 mV/V +0.001 mV/V 95
Hys Hysteresis 0 mV/V +0.001 mV/V 95
NS Nonrepeatability 0 mV/V +0.001 mV/V 95
Z0 Zero Balance 0 mV/V +0.02 mV/V 95
TRop Temperature Range 10 °F +2.0 °F 99
TEout Temperature Effect on Output 0 Ibg/°F + 1.5 e-4 Iby/°F 95
TEzero Temperature Effect on Zero 0mV/V /°F |[£0.0001 mV/V /°F 95
Vex Applied Excitation Voltage 8V +025V 95

Next, given what is known about the load cell error sources listed in Table 7-5, they must be
appropriately incorporated into equation (7-1). The modified module output equation is given in
equation (7-4).

LCout = [(Wc + TEquxTRep)xS + NL + Hys + NS + ZO + TEzeroxTRop]xVex (7-4)
From equation (7-4), the error model for the load cell module is given in equation (7-5).
Elco, = b, T Cs€s T CnLENL T Chys€hys T Cnséns +Cz0€70 (7-5)

+ CTEOut gTEOut + CTEZero gTEZero + CTR"FETR"F + Cvex gvex

The partial derivative equations used to compute the sensitivity coefficients are listed below.

oLC oLC
. = aT(ZUt =S xVey Cg = % = (Wg + TEqut X TRop ) xVy
oLC _0LCout _
oL = GN(I)_Ut = Vex M5 = Shys =Vex
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_ aLCOut =V C _ aLCOUt =V

Cns = NS ex 20 =770 ex
OLCouyt oLCo
C = =TRop xS xV, C = UL _ TR, xV,
TEout OTEout F ex TE Zero OTE 7610 F ~Vex

oLC
CTRop = aTRC:;t = (TEqut X S +TEzerg ) X Vex
Oy, = 6;\(501" = (W + TEgyt X TRop ) xS + NL + Hys + NS + ZO + TE 7o X TRop

ex

7.6.2 Amplifier Module (M)

The amplifier output equation (7-2) must be modified before the associated error model can be
developed. The amplifier error source and parameter names, descriptions, nominal values, error
limits and confidence levels are listed in Table 7-6.

Table 7-6. Parameters used in Modified Amplifier Module Equation

Parameter Description Nominal or Errgr Percent
Name Mean Value Limits Confidence
LCout Amplifier Input
G Gain 0.5 V/imV
Gace Gain Accuracy ov +5mV 95
Gs Gain Stability ov + 1 mV 95
Gn Nonlinearity ov + 1 mV 95
Gns Noise ov +1.5mV 99
Bst Balance Stability ov +20 mV 95
TC Temperature Coefficient | 0 V/°C +2mV/°C 95
TR Temperature Range 5.6 °C +1.1°C 99

Given what is known about the amplifier error sources listed in Table 7-6, they must be
adequately incorporated into the amplifier module output equation (7-2). The modified module
output equation is given in equation (7-6).

Ampout = LCout X G + Gace T Gs + G + Gns + Bst + TC x TRec (7-6)

From equation (7-6), the error model for the amplifier module is given in equation (7-7).

Eampoy — C'-Com ELCou +Ceéc + CGAcc €6 pee + CGS G, + CGNL €6y,

*C6, €65 T CBg €8s T CreéTe + CrRo( ETR-

(7-7)

The partial derivative equations used to compute the sensitivity coefficients are listed below.

_ 9AMPout _ o — OAMpPoy _ OAmpoyt _

Cleoy = =LC Ce
Out aLCOut G oG Out Acc aGACC
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_ OAmpoyt _ _ OAMpPoyt _ _ OAMpoyt _
TG oo T oy
NL
o —AmPout _ | _ 0Ampoy _ 1o 6 = OAMPout _
o OBy CT T aTe ¢ ¢ dRc

7.6.3 Digital Multimeter Module (M3)

The digital multimeter output equation must also be modified before the associated error model
can be developed. The modified multimeter output equation given in equation (7-8) accounts for
the relevant module parameters and error limits listed in Table 7-7. The repeatability parameter,
Vyan, 1s estimated from the three repeat voltages listed in Table 7-4.

DMMOut = AmpOut + DMMACC + DMMres + Vran (7'8)
Table 7-7. Parameters used in Modified Multimeter Module Equation
Parameter Description Nominal or Error Percent
Name p Mean Value Limits Confidence
Ampout DMM Input 480V
DMM ace DC Voltmeter Accuracy ov + (0.07% Read + 2 mV) 95
DMMec DC Voltmete‘r Digital 0V +0.5mV 100
Resolution

The corresponding error model for the multimeter module is given in equation (7-9).
gDMMOut - CAmpom gAmpOut + CDMM Acc gDMM Acc + CDMM res gDMMres + Cvran gvran (7-9)

The partial derivative equations used to compute the sensitivity coefficients are listed below.

_ MMy _, _ ODMMoy; _,
PATRou oAMPoy; MM ace ODMM pec
DMMoy: _, _ DMMoy; _,

Gvran

C =
PMM es aD MM res avran

7.7  Develop Module Uncertainty Models

The next step in the system analysis procedure is to develop an uncertainty model for each
system module, accounting for correlations between error sources.

As discussed in Chapter 6, the uncertainty in a multivariate parameter ( can be determined by
applying the variance addition operator

Uy = \/var(cxgx +CyEy +C8, )

202, 202, 22
= \/cxux +CyUy + C7Uy +2C,Cy Py UyUy, +2C4C; Oy Ul +2CC, 0,y Uy
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where pyy, p and py, are the correlation coefficients for the errors in X, y and z.

7.7.1 Load Cell Module (M,)

The uncertainty model for the load cell module output can be determined by applying the
variance operator to equation (7-5).

uLCOut - Var(gLCOut)
Ey. +Co&s +Cny Ent + CriveErive + Crséns + Cro& (7-10)
G éw, tCs&s +CnLENL T Cryséhys T Cnséns +Cz0¢70
= |var
+ CTEOut gTEOut + CTEZero gTEZero + CTR°F gTR"F + Cvex gvex
There are no correlations between error sources for the load cell module. Therefore, the
uncertainty in the load cell output can be expressed as
2 .2 22 2.2 2 .2 2.2 2.2
U CWC Uy T CsUs + Cy Uy + CryysUpys + CsUns + CzoUzo 711
LCou — 22 2 2 22 (7-11)

2 2
+ CTEOut uTEOut + CTEZero l'ITEZero + CTR"F uTR°F + CVex uvex
7.7.2  Amplifier Module (M)

The uncertainty model for the amplifier module output is developed by applying the variance
operator to the corresponding error model given in equation (7-7).

uAmpOut - var (gAmpOut )

7-12
CLCOut gLCOut + CGgG + CGAcc gGAcc + CGS gGS + CGNL gGNL ( )

var
*C6, €6, T 0y €y, T Crcéte T CrRo ETR.

There are no correlations between error sources. Therefore, the uncertainty model for the
amplifier module output can be expressed as

2 2 2.2 2 2 2 .2 2 2
u _ CLCOutuLCOut + CGUG + CGAcc uGAcc + CGS UGS + CGNL uGNL (7 13)
Ampo, 02 u2 2 u2 2 u2 2 uz
+ GNS GNS BSt BSt + CTC TC + CTRoC TRoC

7.7.3 Digital Multimeter Module (M3)

The uncertainty model for the multimeter module output is developed by applying the variance
operator to the corresponding error model given in equation (7-9).

CAmpom gAmpOut + CDMM Acc £DMM Acc
Upum. - = +/Var | Epum = |var (7-14)
Out Out + C\/ &
vV

+
CDMM res SDMM res ran ran

There are no correlations between error sources and the correlation coefficients all have values of
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unity. Therefore, the uncertainty model for the multimeter module output can be expressed as

_ [z 2 2 2
uDMMom - \/uAmpom + uDMMAcc + uDMMres + u\/ran (7-15)

7.8 Estimate Module Uncertainties

The next step in the system analysis procedure is to estimate uncertainties in module parameters
and to use these estimates to compute the combined uncertainty and associated degrees of
freedom for each module output.

7.8.1 Load Cell Module (M;)

The load cell output uncertainty is computed from the uncertainty estimates and sensitivity
coefficients for each module parameter.

As discussed in section 7.5.1, all of the error sources identified for the load cell module are
assumed to follow a normal distribution. Therefore, the corresponding uncertainties can be
estimated from the error limits, + L, confidence level, p, and the inverse normal distribution

function, ®'(+), as discussed in Chapter 3.

L
(D_l(l-l- pj
2

For example, the bias uncertainty of the calibration weight is estimated to be

U=

_0.0031b,  0.003 b,
W = ®_1(1+0.99j 25758
2

=0.0012 Ib,.

Similarly, the uncertainty due to the excitation voltage error is estimated to be

§ - 025V 20.25\/:0_1276\,.
ex o1 (1 + 0.95) 1.9600
2

The sensitivity coefficients are computed using the parameter nominal or mean values.

OWC = S XVEX CS = (WC +TE0Ut XTROF) XVex
=0.4 mV/V/lb; x8 V =(31Ib; +01b; /°Fx10 °F)x8 V
=3.2 mV/lb; =31b; x8V =241b, eV
CnL =Vex =8V Chys =Vex =8V Cns =Vex =8V Czo0 =Vex =8V
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CTROF = (TEOUt X S +

TEzero) X Vex

= (0x0.4 mV/V/lb; +0)x8 V

=0
CTE sero = TRop xVey

=10°Fx8V
=80°FxV

CTEOut = TROF X S xVex

=10°F x0.4 mV/V/lb; x§ V
=32 °FxmV/lb,

Cvex = (WC =+ TEOUt X TROF) X S + NL + HyS + NS + ZO +TEZerO X TROF

= (31b; +01b;/°F x10 °F) x 0.4 mV/V/Ib; +0 mV/V +0 mV/V + 0 mV/V

+0mV/V +0mV/V/°F x10 °F
=31b; x0.4 mV/V/lb; =1.2 mV/V

The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-8.

Table 7-8. Estimated Uncertainties for Load Cell Module Parameters

Param.| Nominal or + Error Percent Standard Sensitivity | Component
Name | Mean Value Limits Conf. Uncertainty Coefficient | Uncertainty
We 3 Ibg +0.003 Ibs 99 0.0012 lbg 3.2 mV/lbs | 0.0037 mV
S 0.4 mV/V/lb¢ 24 1bexV

NL 0 mV/V +0.001 mV/V 95 0.0005 mV/V 8V 0.0041 mV
Hys 0 mV/V +0.001 mV/V 95 0.0005 mV/V 8V 0.0041 mV
NS 0 mV/V +0.001 mV/V 95 0.0005 mV/V 8V 0.0041 mV
Z0 0 mV/V +0.02 mV/V 95 0.0102 mV/V 8V 0.0816 mV
TRep 10 °F +2.0°F 99 0.7764 °F 0

TEout 0 1by/°F +1.5x10* Iby°F | 95 0.0001 1b/°F {32 °F*xmV/lbs 0.0024 mV
TEzero | OmV/°F | £0.0001 mV/V/°F| 95 0.00005 mV/V/°F| 80 °FxV | 0.0041 mV
Vex 8V +025V 95 0.1276 V 1.2mV/V | 0.1531 mV

The component uncertainties listed in Table 7-8 are the products of the standard uncertainty and
sensitivity coefficient for each parameter. From equation (7-1), the nominal load cell output is

computed to be

LCout =W xS xVex =3 Ibr x 0.4 mV/V/Ibg x 8 V.= 9.60 mV.

The load cell output uncertainty is computed by taking the root sum square of the component

uncertainties.

u LCout —

(0.0037 mV)* +(0.0041 mV)* +(0.0041 mV)* +(0.0041 mV)*

+(0.0816 mV)* +(0.0024 mV)* +(0.0041 mV )* +(0.1531 mV )

—4/0.0302 mVZ =0.174 mV
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The Welch-Satterthwaite formula given in equation (7-16) is used to compute the degrees of
freedom for the load cell output uncertainty.

4
u
v — LCout
WCout " [ 4 4 4 4
C UW 4 4 4 4 4 4 4 4
W, Cy U ChysUn CneU C,oU TRor ~TRo
C C + NL™NL + ys T HysS + NS ¥NS + Z0%YZ0 + F F
Ve VL VHys VNs V70 VIRop
4 4 4 4 4
u C
+ TEout TEout + TEzero TEZero + Vex uVex
VTEout YTE zero Vex

_ (7-16)

The degrees of freedom for all of the error source uncertainties are assumed infinite. Therefore,
the degrees of freedom for the load cell output uncertainty are also infinite.

7.8.2 Amplifier Module (M)

The amplifier output uncertainty is computed from the uncertainty estimates and sensitivity
coefficients for each module parameter.

As discussed in section 7.5.2, all of the error sources identified for the amplifier module are
assumed to follow a normal distribution. Therefore, the corresponding uncertainties can be
estimated from the error limits, confidence level, and the inverse normal distribution function.

For example, the uncertainty due to the gain accuracy is estimated to be

5mV

5mV

U =
Chce o1 (1 +0.95

2

;

1.9600

=2.551mV.

The sensitivity coefficients are computed using the parameter nominal or mean values.

CI-COut =G=
CGS :1
CBSt :1

0.5V/mV

Cg = LCout = 9.6 mV

CGNL = 1

CTC = TROC = 56 OC

CGAcc =1
CGNS _1
Crr,. =1C =0

The estimated uncertainties and sensitivity coefficients for each parameter are listed in Table 7-9.

Table 7-9. Estimated Uncertainties for Amplifier Module Parameters

Param. | Nominal or | + Error | Percent Standard Sensitivity | Component
Name Mean Value| Limits | Confid. Uncertainty | Coefficient | Uncertainty

LCout 9.6 mV 0.1740 mV 0.5V/mV | 0.0869 V

G 0.5 V/mV 9.6 mV

Gace (A% +5mV 95 2.551 mV 1 0.0026 V

Gs (A% +1mV 95 0.510 mV 1 0.0005 V
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G ov +1mV 95 0.510 mV 1 0.0005 V
Gns (A% +1.5mV 99 0.583 mV 1 0.0006 V
Bst oV +20 mV 95 10.204 mV 1 0.0102 V
TC oV +2mV/°C 95 1.020 mV/°C 5.6 °C 0.0057 V
TRec 5.6°C +1.1°C 99 0.427°C 0 ov

From equation (7-2), the nominal amplifier output is computed to be
Ampoyt = LCoutx G =9.60 mV x 0.5 V/mV = 4.80 V.

The amplifier output uncertainty is computed by taking the root sum square of the component
uncertainties.

(0.0869 V)* +(0.0026 V)* +(0.0005 V)* +(0.0005 V' )*

Ua
O 10,0006 V) +(0.0102 V) +(0.0057 V)

\0.0077 V? =0.0877 V.

The degrees of freedom for the amplifier output uncertainty are computed using the Welch-
Satterthwaite formula, as shown in equation (7-17).

4

Ampoyt
1% = — — -
AmMpOyt 4 4 4 4 4 4 4 4 C4 u4 (7 17)

LCout LCout n Gace GAcc n Gg Gg n GNL GNL n GNs GNs

Yicout VG ace Vg VenL NS

4 4
4 4 4 4 u
C u CrcU TRoc~ ~TRo
4 “BSTYBST , *TCTC C C

VBst Vrc VTRoc

The degrees of freedom for all of the error source uncertainties are assumed infinite. Therefore,
the degrees of freedom for the amplifier output uncertainty are also infinite.

7.8.3 Multimeter Module (M3)

The multimeter output uncertainty is computed from the uncertainty estimates and sensitivity
coefficients for each module parameter.

As discussed in section 7.5.3, the DMM accuracy error follows a normal distribution. Therefore,
the uncertainty due to the digital multimeter accuracy is estimated to be

48y 207 o vx YV
) 100 1000 mV _[

u =
DMM pcc 0! (1 + ;).95)

0.0034 V+0.002 V) 00054V _ oo,
1.9600

1.9600
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The DMM resolution error follows a uniform distribution, so the digital multimeter resolution
uncertainty is estimated to be

_05mV _05mV _ o2V =0.0003 V.

u =
PMMres 3 1.732

The repeatability uncertainty is the standard deviation of the repeat measurements listed in Table
7-4. The mean voltage offset is

— _0.056 +0.061+ 0.060

offset
3

_0.177

\Y% V=005V

The differences between the individual voltage offsets and the mean value are

Vioftset = Voftset = 0.056 V —0.059V=— 0.003V

Voftset —Voftset = 0.061 V—0.059V= 0.002V
Vioftset — Voftset = 0.060 V —0.059V=0.001V

The standard deviation is

(0.003 V)* +(0.002 V) +(0.001 V)’
S‘/offset - 2

2
_ /w = /0.000007 V2 = 0.0026 V.,

Thus, the repeatability uncertainty is

by, =0.0026 V.

The mean voltage is
\7 =V0 +V offset

~(4.80+0.059) V
=4.859V

and the repeatability uncertainty in the mean voltage is

~0.0026 V_ 0.0026 V

Wean B 1732

The mean voltage is the reported output value in this analysis, so U should be used for the

=0.0015V.

combined uncertainty estimate. The estimated uncertainties for each parameter are listed in
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Table 7-10.

Table 7-10. Estimated Uncertainties for Digital Multimeter Module Parameters

Parameter | Nominal or + Error Percent Standard Sensitivity | Component
Name | Mean Value Limits Conf. Uncertainty | Coefficient | Uncertainty
Ampout 480V 0.0877 V 1 0.0877V
DMMacc oV +0.0054 V 95 0.0027 V 1 0.0027 V
DMM s oV +0.0005 V 100 0.0003 V 1 0.0003 V
Vran 0.059 V 0.0015 V 1 0.0015V

The average DMM output voltage is 4.859 V and the uncertainty in this value is computed by
taking the root sum square of the standard uncertainties.

Uomnag,, = \(0:0877 V) +(0.0027 V) +(0.0003 V)2 +(0.0015 V)’

=4/0.0077 V2 =0.0878 V.

The degrees of freedom for the DMM output uncertainty are computed using the Welch-
Satterthwaite formula given in equation (7-18).

u4
_ DMMout
VoMMoyt = S 4 4 u\é/l (7-18)
Am DMM DMM Vi
POut n Acc n res , Vran
Vampoyt  VDMMace  VDMMpes  Wian

The degrees of freedom for error source uncertainties were assumed to be infinite, except for the
uncertainty due to repeatability error, which has a degrees of freedom equal to 2. So, the
degrees of freedom for the estimated uncertainty in the DMM output voltage is computed to be

4 4
u
DMM oyt 0.0877V 4
1% =Vy X——=2x| —— | =2x(58.5) zw.
M e T d [0.0015 \ (585)
ran

7.9 Compute System Output Uncertainty

In general, the system output uncertainty is equal to the output uncertainty for the final module.
The associated degrees of freedom for the system output uncertainty are also equal to the degrees
of freedom for the final module output uncertainty.

In the evaluation of the load cell system modules, it has been illustrated how the uncertainty in
the output of one module propagates through to the next module in the series. For a 3 1br input

load or weight, the average system output, V , and output uncertainty, Uy , are 4.859 V and
0.097 V (or 97 mV), respectively.
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Note: The load cell system analysis can be duplicated for other calibration
weights. The resulting input weights, output voltages and uncertainties could then
be used to create uncertainty statements for a range of values.

7.10 Report Analysis Results

The analysis results for the load cell measurement system are summarized in Table 7-11. As
should be expected, the signal output uncertainty increases substantially as errors propagate

through the amplifier module.

Table 7-11. Summary of Results for Load Cell System Analysis

Module Module Standard | Degrees of
Input Output Uncertainty | Freedom
Load Cell 3 lbs 9.60 mV 0.174 mV o0
Amplifier 9.60 mV 480V 87.7 mV 00
Digital Multimeter 480V 4859V 87.8 mV o0

It is useful to take a closer look to determine how the uncertainties for each module contribute to
the overall system output uncertainty. This can be accomplished by viewing the pareto chart for
each module, shown in Figures 7-4 through 7-6.

The pareto chart for the load cell module shows that the excitation voltage and zero balance are
the largest contributors to the load cell output uncertainty. Replacement of the TMO-2 excitation
voltage with a precision voltage source could significantly reduce the load cell output
uncertainty. Mitigation of the zero balance error, however, would most likely require a different
load cell.

Excitation Voltage

Zero Balance

Hysteresis

Noise

Nonlinearity

Temperature Effect on Zero

Calibration Weight

Temperature Effect on Output

0 20 40 60 80 100
Percent Contribution to Uncertainty in Load Cell Output

Figure 7-4. Pareto Chart for Load Cell Module

Because the load cell output uncertainty is multiplied by the amplifier gain, it is the largest
contributor to the amplifier output uncertainty, as shown in Figure 7-5. Errors due to amplifier
balance stability and temperature coefficient also have some effect on the amplifier output
uncertainty.
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Load Cell Output
Balance Stability
Temperature Coefficient
Gain Accuracy

Gain Noise

Gain Nonlinearity

Gain Stability

0 20 40 60 80 100

Percent Contribution to Uncertainty in Amplifier Output

Figure 7-5. Pareto Chart for Amplifier Module

As expected, the amplifier output uncertainty is the largest contributor to the digital multimeter
output uncertainty. The accuracy of the digital multimeter also adds to the output uncertainty.

Amplifier Output
DC Voltmeter Accuracy
DC Voltmeter Digital Resolution

Repeatability Error

0 20 40 60 80 100
Percent Contribution to Uncertainty in Multimeter Output

Figure 7-6. Pareto Chart for Digital Multimeter Module

7.10.1 Confidence Limits

The system output uncertainty and degrees of freedom can be used to compute confidence limits
that are expected to contain the system output voltage with some specified confidence level or
probability, p. The confidence limits are expressed as

V tty U7 (7-19)

where the multiplier, t,,,, is the t-statistic and o= 1- p.

For this analysis, let us assume that we want 95% confidence limits (i.e., p = 0.95). The
corresponding t-statistic is to ¢25... = 1.96 and the confidence limits are computed to be

4.859 V£1.96x0.0878 V or 4859 V£0.172 V.
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CHAPTER 8: UNCERTAINTY ANALYSIS FOR
ALTERNATIVE CALIBRATION SCENARIOS

Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test
(UUT) attributes.”® In general, calibrations are not considered complete without statements of
the uncertainty in these estimates. Developing these statements requires that all relevant sources
of measurement error are identified and combined in a way that yields viable uncertainty
estimates.

Unfortunately, confusion regarding which error sources should be included and how they should
be combined often exists for calibration processes. Much of this confusion can be eliminated by
an examination of the objective of each UUT attribute calibration and a consideration of the
corresponding measurement configuration or “scenario.”

In this chapter, the calibration of a UUT attribute is examined within the context of four
scenarios.

1. The measurement reference (referred herein as the MTE) measures the value of
the UUT attribute.

The UUT measures the value of the MTE attribute.
3. The UUT and MTE attribute values are measured with a comparator.

The UUT and MTE both measure the value of an attribute of a common artifact.

Each scenario yields an observed value, referred to as a “measurement result” or “calibration
result” and a description of measurement process errors that accompany this result. This
information is summarized and then employed to obtain an uncertainty estimate in the calibration
result. Examples are given to illustrate concepts and procedures.

8.1 Calibration Scenarios Overview

The four calibration scenarios listed above are described in detail in the following sections. The
descriptions provide guidelines for developing uncertainty estimates relevant to each scenario.
The structure and content of each description is intended to provide a basis for developing
whatever mathematical customization is needed for specific measurement situations.

In each scenario, we have a measurement denoted 6. The general measurement equation is
5 = eUUT,b + gcal (8'1)

where eyyrp is the true UUT attribute bias and &4 is the calibration error. Applying the variance
operator to equation (8-1), the uncertainty in J1s

Uy =/Var(d) = \/var(e,yr , + &)

= /var(ey, ) -

5% An attribute is a measurable characteristic, feature or aspect of an object or substance.
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8.1.1 Special Notation

The notation used in this chapter differs slightly from that used in other chapters and appendices

in this document. The subscripts and variables designators used in this chapter are summarized
in Table 8-1.

Table 8-1. Calibration Scenarios Notation
Notation | Description

e an individual measurement process error,
such as repeatability, resolution error, etc.

£ combined errors comprised of individual
measurement process errors
m measurement
b bias
cal calibration

true true value

n nominal value
X quantities relating to the UUT
y quantities relating to the MTE

This special notation is intended to provide a means of distinguishing between individual
measurement process errors and combined errors. For example, measurement error is
represented by the quantity &, the error in a calibration result is represented by &l and the bias
in the UUT attribute is represented by the quantity eyur p.

8.1.2 Measurement Error Sources
Measurement process errors encountered in a given calibration scenario typically include:>

emTep = bias in the measurement reference or MTE

€rep = repeatability or random error

€res = resolution error

€op = operator bias

Eother = other measurement error, such as that due to environmental corrections,

ancillary equipment variations, response to adjustments, etc.

As discussed in Chapter 2, the sum of the errors encountered during the measurement process
can be expressed as

gm = eMTE,b + erep + eres + eop +€

other

(8-3)

where equation (8-3) is the measurement error model.

>3 Descriptions of these measurement process errors are given in Chapter 3.
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8.1.3 Calibration Error and Measurement Error

As previously discussed, the result of a calibration is taken to be an estimation of the true UUT
attribute bias, eyutp. The error in the calibration result is represented by the quantity &q. In all
four calibration scenarios, the uncertainty in the estimation of eyyrp is computed as the
uncertainty in &

For some calibration scenarios, & is synonymous with the measurement error &,. However, in
other scenarios, &4 and &, may not have equivalent sign or magnitude.

8.1.4 UUT Attribute Bias
For calibrations, it is implicitly assumed that the UUT attribute of interest is assigned some

design or “nominal” value X,. The true value of the UUT attribute, Xiye, is the nominal value
plus the UUT attribute bias.

Xirue = Xn T €ut p (8-4)

true

The difference between the UUT attribute’s true value, Xie, and the nominal value X, is the UUT
attribute’s bias eyyrp.

eUUT,b = Xirie — %o (8'5)

Note: Equation (8-4) does not represent the basic measurement equation

Xn = Xtrue T &m. Rather, it 1s a statement of the relationship between the UUT
attribute’s true value, its stated nominal value and its bias. In this context, the
relationship between measurement error and the UUT attribute bias is

&m = - uuTp.

In some cases, the UUT is a passive item, such as a gage block or weight, whose attribute of
interest is a simple characteristic like length or mass. In other cases, the UUT is an active device
such as a voltmeter or tape measure, whose attribute consists of a reading or other output like
voltage or measured length. In the former case, the concepts of true value and nominal value are
straightforward. In the latter case, some comment is needed.

As stated earlier, the result of a calibration is considered to be an estimate of the quantity eyyr p.
From equation (8-4), if the UUT attribute has a nominal value Xy, estimating X is equivalent to
estimating eyyrp. Additionally, eyyrp is an “inherent” property of the UUT attribute,
independent of its resolution, repeatability or other characteristic dependent on its application or
usage environment.

Accordingly, if the UUT’s nominal value consists of a measured reading or other actively
displayed output, the UUT bias must be taken to be the difference between the true value of the
quantity being measured and the value internally sensed by the UUT, with appropriate
environmental or other adjustments applied to correct this value to reference (calibration)
conditions.

For example, suppose the UUT is a steel yardstick whose length is a random variable following a
probability distribution with a standard deviation arising from variations in the manufacturing
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process. The UUT is used under specified nominal environmental conditions where repeatability,
resolution error, operator bias and other error sources may come into play. In this case, the bias
of the yardstick is systematically present, regardless of whatever chance relationship may exist
between the length of the measured object, the closest observed “tick mark,” the temperature of
the measuring environment, the perspective of the operator, and so on.

8.1.5 MTE Attribute Bias

The value of the MTE attribute, which the value of the UUT attribute is compared against, has an
inherent deviation eyrgp from its nominal attribute value Y, or value stated in a calibration
certificate or other document. The true value of the MTE attribute Y. is the nominal value plus
the MTE attribute bias.

ytrue = yn + eMTE,b (8'6)

Note: As with Equation (8-4), Equation (8-6) does not represent the basic
measurement equation Xn = Xtrue T &m.

As with the UUT, the MTE may be a passive item, such as a gage block or weight or an active
device, such as a voltmeter or tape measure. In either case, it is important to bear in mind that
ewmTep 18 an inherent property of the MTE attribute, exclusive of other errors such as MTE
resolution or the repeatability of the measurement process. The value of the MTE attribute may
vary with environmental deviations, but it can usually be adjusted or corrected to some reference
set of conditions.

8.2 Scenario 1: The MTE Measures the UUT Attribute Value

In this calibration scenario, the UUT is a passive device whose attribute provides no reading or
other metered output. Its output may consist of a generated value, as in the case of a voltage
reference, or a fixed value, as in the case of a gage block.”® The measurement equation is

y= Xtrue +gm (8'7)

where Yy is the measurement result obtained with the MTE, Xy is the true value of the UUT
attribute and &, is the measurement error.

Substituting equation (8-4) into equation (8-7), the measurement equation can be written as
Y=X,+€urptEn- (8-8)

The difference y — X, is a measurement of the UUT attribute bias eyytp. This quantity is denoted
by the variable ¢ and defined as

56 Cases where the MTE measures the value of a metered or other UUT attribute exhibiting a displayed value are covered later as
special instances of Scenario 4.

102



=Curh Tén (3-9)
=€urp T Ecal
where
gcal = ‘gm = eMTE,b + erep + eres + eop + eother' (8'10)

Since the UUT is a passive device, resolution error and operator bias arise exclusively from the
use of the MTE. In addition, the uncertainty due to repeatability is estimated from a random
sample of measurements taken with the MTE. However, variations in UUT attribute value may
contribute to this estimate. Random variations in UUT attribute value and random variations due
to other causes are not separable from random variations due to the MTE.>” Consequently, €rep
must be taken to represent a “measurement process error’ rather than an error attributable to any
specific influence.

Given these considerations, the error sources €rep, €res and €qp in equation (8-10) are

€rep = EmTE rep
res eMTE,res (8'1 1)

op = EMTE op

D D

where emte rep represents the repeatability of the measurement process. The “MTE” part of the
subscript indicates that the uncertainty in the error will be estimated from a sample of
measurements taken by the MTE.

From equations (8-10) and (8-11), the error in the calibration result J'is

gcal = eMTE,b + eMTE,rep + eMTE,res + eMTE,op + eother (8'12)

and the uncertainty in Jis

ucal = V Var(gcal)

= JVar(€yre ) + Var(Byre o) + Var(Byme res ) + Var(Byyre ) + Var(Eye, ) (8-13)

_ 2 2 2 2 2
= \/UMTE,b + Unre,rep + Umre res T Unte.op T Ysther -

The error source €qiher may arise from corrections ensuing from environmental factors, such as
thermal expansion. In this case, it may be necessary to correct measured values to those that
would be attained at some reference temperature, such as 20 °C.

57 As stated in Section 2.3, random variations in a measured quantity are not separable from random variations due other error
sources.
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For example, let the UUT attribute be gage block length and the MTE attribute be the reading
obtained with a super micrometer. If dyutenv and omreenv represent thermal expansion
corrections to the UUT and MTE attributes, respectively, then the mean value of the
measurement sample would be corrected by an amount equal to>®

5env = 5MTE,env - 5UUT,env (8-14)
and the error in the environmental correction ony would be written
€other = €env = CmrE.env — CUUT ey (8-15)
The error in the corrected calibration result Scorr = O — Oeny 1S
Ecal = Curep T Cvterep T CmrEres T EMTE0p T EMTE env — EUUT env (3-16)

and the uncertainty in Jorr 1S

ucal = \] Var(gcal)

= \/V&r(eMTE,b) + Var(@yre ey ) + VaI(Byre res) + VaI(Byre op) + VA(Byre eny — €Lyt o) (8-17)

_ 2 2 2 2 2 2
- \/UMTE,b + uMTE,rep + uMTE,res + uMTE,op + uMTE,env + uUUT,env - 2loenvuMTE,enquUT .env

where the correlation coefficient peny accounts for any correlation between emre eny and eyut.eny-
The correlation coefficient can range in value from — 1 to +1. If the same temperature
measurement device (e.g., thermometer) is used to make both the UUT and MTE corrections,
then

Peny =1 (8-18)

and equation (8-17) can be rewritten as

_ 2 2 2 2 2 2
ucal - \/uMTE,b + uMTE,rep + uMTE,res + uMTE,op + uMTE,env + uUUT env 2uMTE,enquUT,env . (8_19)

8.3 Scenario 2 : The UUT Measures the MTE Attribute Value

In this scenario, the MTE is a passive device whose reference attribute provides no reading or
other metered output. Its output may consist of a generated value, as in the case of a voltage
reference, or a fixed value, as in the case of a gage block.” The measurement equation is

X = Virte + & (8-20)

58 The form of this expression arises from the fact that thermal expansion of the gage block results in an inflated gage block
length, while thermal expansion of the micrometer results in applying additional thimble adjustments to narrow the gap between
the anvil and the spindle, resulting in a deflated measurement reading.

%9 Cases where the UUT measures the value of a metered or other MTE attribute exhibiting a displayed value are covered later as
special instances of Scenario 4.
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where X is the value measured by the UUT, Yy is the true value of the MTE attribute being
measured and &y 1s the measurement error. Substituting equation (8-6) into equation (8-20), the
measurement equation can be written as

X=Ynt EMTEDL T &n- (8-21)

The difference X — y;, is a measurement of the UUT attribute bias eyutp. This calibration result is
denoted by the variable 6 and defined by

O=X—Y, =€uep T é&n (8-22)
For this scenario, the measurement error model is

gm = eUUT,b + erep + eres + eop + eother

(8-23)

where eyyrp 1s the UUT attribute bias. In this scenario, the MTE is a passive device. Therefore,
resolution error and operator bias arise exclusively from the use of the UUT. In addition, the
uncertainty due to repeatability is estimated from a random sample of measurements taken with
the UUT. Consequently, the error sources €rep, €res and €op in equation (8-23) are

erep = eUUT,rep
eres = eUUT,res (8'24)

€op = CuuT.op -
The “UUT” part of the subscript indicates that the uncertainty in the error will be estimated from
a sample of measurements taken by the UUT. The error source €qther may need to include mixed
contributions as described in Scenario 1.

Substituting equations (8-23) and (8-24) into equation (8-22) and rearranging gives

5 = eUUT,b + eMTE,b + eUUT,rep + eUUT,res + eUUT,op + eother (8'25)

As in scenario 1, equation (8-25) provides an expression that is separable into a measurement &
of the UUT attribute bias, eyyrp, and a calibration error, &g, given by

0= Curp T € (8-26)
where
gcal = eMTE,b + eUUT,rep + eUUT,res + eUUT,op + eother . (8'27)

The uncertainty in 6, and thus, eyurp is
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ucal = \lvar(gcal)

= \/Vélr(gMTE,b) + Var(gUUT,rep) + Var(gUUT,res) + Va'I‘(‘C"UUT ,op) + Var(gother) (8'28)

_ 2 2 2 2 2
- \/UMTE,b + uUUT,rep + uUUT,res + uUUT,op + uother .

8.4  Scenario 3: The MTE and UUT Attribute Values are Compared

In this scenario, a device called a “comparator” is used to measure or compare UUT and MTE
attribute values.®® In keeping with the basic notation, the indicated value of the UUT attribute x
is expressed as

X = Xiue T Suutm (8_29)
and the indicated value of the MTE attribute y is expressed as
Y=Yiet EMTE,m (8_30)

where gyutm is the measurement error involved in the use of the comparator to measure the UUT
attribute value and evrem is the measurement error involved in the use of the comparator to
measure the MTE attribute value.
As discussed in Sections 8.1.4 and 8.1.5, for calibrations, the UUT attribute and MTE attribute
are assigned some design or “nominal” values X, and Yy, respectively. Substituting equation
(8-4) into equation (8-29) gives

X=X, +&urp +Euurm- (8-31)
Similarly, substituting equation (8-6) into equation (8-30) gives

Y=Y, tCurep t Emrem- (8-32)

The result of the comparison is a measured deviation 6, which is expressed as

O=X-Y
(8-33)
=Xy = Yo +€urp ~Curen + (Euurm — Emrem)-
In most calibrations involving comparators, X, = Y, and equation (8-33) becomes °'
6 =€yurp ~Curep T (Euurm — Emrem) - (8-34)

5 The MTE and UUT attributes may be measured sequentially or simultaneously, depending on the comparator device.

81 To accommodate cases where Yy # X, 6= (X —Xn) — (Y — Yn). For example, consider a case where the MTE is a 2 cm gage block
and the UUT is a 1 cm gage block. Suppose that the comparator readings for the MTE and UUT are 2.10 cm and 0.99 cm,
respectively. Then, 6=(0.99 — 1.0 ) —(2.10 —2.0) =—0.110 cm. The corrected value for the UUT attribute is X;=x+ & = 1.0
cm+ (= 0.110) cm = 0.89 cm.
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As with the previous scenarios, equation (8-34) provides an expression that is separable into a
measurement o of the UUT attribute bias, eyyrp, and a calibration error, &g, given by

0 =€uurp T+ & (8-35)
where
Eal = (gUUT,m - gMTE,m) —Cyrep- (8-36)

The measurement error model for aurem is
gMTE,m = ec,b + eMTE,rep + eMTE,res + eMTE,op + eMTE,other (8'37)

where e¢j, represent the bias of the comparator. Similarly, the measurement error model for
&uuT,m 18

gUUT,m = ec,b + eUUT,rep + eUUT,res + eUUT,op + eUUT,o’[her . (8'38)
Substituting equations (8-37) and (8-38) into equation (8-36), &al 1S

Eeal = (eUUT,rep - eMTE,rep) + (BUuT res — EwTEres) T (eUUT,op - eMTE,op)

(8-39)
+ (eUUT,other —Cure ,other) - eMTE,b'
The uncertainty in Jdis
ucal = Var(gcal )
Var(eUUT,rep - eMTE,rep) + Var(eUUT,res - eMTE,res) + Var(eUUT op eMTE,op) (8_40)

+ var(€yyr omer — Ewre otmer ) T Var(—€yre p)-

Accounting for possible correlations between eyyr,op and eure,op and between eyyr,other and
emTE other, the uncertainty in o can be expressed as

2 2 2 2 2 2
Unirerep T Uout rep T Unmte res T Uour res T Umre.op + Uuur op

U = .. (841

cal 2 2
_2popuMTE,opuUUT,op + uMTE,other + uUUT,other - 2lootheruMTE,otheruUUT,other + uMTE,b

8.5 Scenario 4: The MTE and UUT Measure a Common Artifact

In this scenario, both the MTE and UUT measure the attribute value of a common artifact. The
measurements by the MTE and UUT are made and recorded separately. An example of this
scenario is the calibration of a thermometer (UUT) using a temperature reference (MTE), where
both the UUT and MTE are placed in an oven.

Denoting the true value of the artifact as T, the UUT measurement equation is

X=T+&urm (8-42)
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where gyutm 1s the measurement process error for the UUT measurement of the artifact’s value.
Similarly, the MTE measurement equation is

y= T+ EMTE.m (8‘43)

where eutem 1s the measurement process error for the MTE measurement of the artifact’s value.

The difference between the measurement results J is expressed as

Oo=X-Y
(8-44)
=&uur.m ~ EmTE M
The measurement error model for gyutm is
gUUT,m = eUUT,b + eUUT,rep + eUUT,res + eUUT,op + eUUT,other (8'45)
and the measurement error model for gurgm is
gMTE,m = eMTE,b + eMTE,rep + eMTE,res + eMTE,op + eMTE,other . (8'46)

Substituting equations (8-45) and (8-46) into equation (8-44), provides an expression that is
separable into a measurement o of the UUT attribute bias, eyyryp, and a calibration error, &al,
given by

5 = eUUT,b + gcal (8'47)
where
Eeal = _eMTE,b + (eUUT,rep - eMTE,rep) + (eUUT,res - eMTE,res)

(8-48)
+ (eUUT,op - eMTE,op) + (eUUT,other - eMTE,other )
As in scenario 3, the uncertainty in Jdis

ucal = Var(gcal)

var(—€yre ) + Var(€yyr rep — Cure.rep) + VAr(Eur res — Cuire res) (8-49)

+var(eyyr o eMTE,op) + Var(eUUT,other - eMTE,other)'

Accounting for possible correlations between eyyr,op and eure,op and between eyyr,other and
emTE other, the uncertainty in o can be expressed as

2 2 2 2 2 2 2
Uvten + Unre rep T Uout rep T Umte res T Uout res T Unte.op T Uour op

Uy, = . (8-50)

2 2
_2popuMTE,opuUUT,op + uMTE,other + Uyt other — 2lootheruMTE,otheruUUT,other
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8.5.1 Special Cases for Scenario 4
There are two special cases of Scenario 4 that may be thought of as variations of Scenarios 1 and

2. Both cases are accommodated by the Scenario 4 definitions and expressions previously
developed.

Case 1: The MTE measures the UUT and both the MTE and UUT provide a metered or
other displayed output.

In this case, the common artifact is the UUT attribute, consisting of a “stimulus” embedded in
the UUT. An example would be a UUT voltage source whose output is indicated by a digital

display and is measured using an MTE voltmeter.

Case 2: The UUT measures the MTE and both the MTE and UUT provide a metered or
other displayed output.

In this case, the common artifact is the MTE attribute, consisting of a “stimulus” embedded in
the MTE. An example would be an MTE voltage source whose output is indicated by a digital
display and is measured using a UUT voltmeter.

8.6  Uncertainty Analysis Examples

Four scenarios have been discussed that yield expressions for calibration uncertainty. In all
scenarios, the calibration result is expressed as

o= €uutp T €cal

and the calibration uncertainty is

ucal = \ Var(gcal) .

Uncertainty analysis examples for the four calibration scenarios are provided in the following
subsections.

8.6.1 Scenario 1: The MTE Measures the UUT Attribute Value

In this scenario, the measurement result is =Y — X, and &g 1s expressed in equation (8-12). The
example for this scenario consists of calibrating a 30 gm mass with a precision balance. The
uncertainty in the local gravity is considered to be negligible in this measurement process.
Multiple measurements of the UUT mass are taken and the sample statistics are computed to be

Sample Mean = 30.000047 gm
Standard Deviation = 1.15x10° gm
Uncertainty in the Mean = 6.64 x 10° gm
Sample Size =3

The measurement result is & = (30.000047 —30) gm = 4.7 x 10 gm. However, the
measurements are not taken in a vacuum, so the buoyancy of displaced air can introduce
measurement error. The balance is calibrated with calibration weights with a density of
put = 8.0 gm/cm’. The air buoyancy correction is
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(1 = Pair /pwl)
1_pair /pUUT)

Vcorr = 7 X
(

where Y is the sample mean, p,ir is the local air density and pyur is the density of the UUT

mass. For this analysis, we will assume that puir = 1.2 x 107 gm/cm3 and pyyr = 8.4 gm/cm3.
The corrected sample mean is computed to be

_ (1-0.0012/8.0)
Yeorr = 30.000047 gm x
(1-0.0012/8.4)
(1 0.00015)
=30.000047 gm x
(1-0.00014)
=30.000047 gm x 0'99982 =30.000047 gm x 0.99999
=29.99975 gm

and the corrected calibration result is &, = (29.99975 — 30) gm =—2.5 x 10™ gm.

corr
In the mass calibration scenario, the following measurement process errors must be considered:

o Bias of the precision balance, eure p.

o Repeatability, emre rep.

o Error due to the digital resolution of the balance, emte res.

o Environmental factors error resulting from the buoyancy correction, €gpy.

The error in J,,,, is

gcal = eMTE,b + eMTE,rep + eMTE,res + eenv

where
Cov = LUt v = Clepair + C2epUUT
and e, and e, are the errors in the air and UUT densities, respectively. The coefficients ¢,

and C; are sensitivity coefficients that determine the relative contribution of the errors € - and

e,, o the total error €e¢ny. The uncertainty in 5corr

cal — Var(gcal)

= \/V8'r(eMTE,b) + Var(@yre rep ) + VAI(Byre o) + var(ce, + C.€ ur )

_ 2 2 2 2,2 2,2
- \/UMTE,b + uMTE,rep + uMTE,res + Cl upai, + C2 uPUUT + chczpenvuparupum .
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The correlation coefficient peny accounts for any correlation between €, and €, . The

correlation coefficient can range in value from — 1 to +1. In this analysis, the error in the air
density is considered to be uncorrelated to the error in the density of the UUT mass. Therefore,
Penv = 0 and the uncertainty Ugy can be expressed as

. 2 2 2 2,2 2
ucal - \/UMTE,b + uMTE,rep + uMTE,res + Cl upair + Czu

2
PuuTt

2 2
_ 2 2 2
- \/UMTE,b + uMTE,rep + uMTE,res + (Clupair ) + (CZUpUUT )

The sensitivity coefficients are computed to be®

1

_aycorr: 0 |:_>< l_pair/pwt :| ¥ x 0 |: 1_pair/lowt :|

- aIOair 8loair (1 ~ Pair /pUUT ) 8IOair (1 ~ Pair /pUUT )
— 7 X{ 1_loair/pwt _Lj|
1= pa / Pour Puut (1 = Pair /pUUT) Pt
~30.000047 gm y 1-0.0012/8.0 B 1
1-0.0012/8.4 8.4gm/cm3 X(1—0.0012/8.4) 8.Ogm/cm3
=w>{0.119cm3 /gm—0.125 cm’ /gm] =-0.18cm’
0.99986

(o =WC°” = 0 yx l_pai"/p\m :VX 0 1_pair/pwt
’ OPuur  9Puur (1 = Pair | Pout ) OPyur (1 = Pair | Pour )

V x Pair % 1_pair /pwt

=-y
ijT (1 = Pair /puu'r )2
— 230.000047gm x 20012 113 ) g 1 0-0012/8.0
(84 (1-0.0012/8.4)
0.99985

=-30.000047gm x 0.000017 cm’ / gm x =-51x10"cm’

0.99971

The distributions, limits, confidence levels and standard uncertainties for each error source are
summarized in Table 8-2.

62 Guidance on the development of multivariate error models is provided in Chapter 6.
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Table 8-2. Summary of Scenario 1 Uncertainty Estimates

Confidence
Error Level Error Deg. of | Analysis Standard
Error Limits (%) Distribution | Freedom | Type Uncertainty
eMTED +0.12 gm 95.00 Normal Infinite B 6.12 x 107 gm
Erep Student’s t 2 A 6.64 x 10° gm
€res +0.005 gm 100.00 Uniform Infinite B 29x%10° gm
€. +3.6 x 10° gm/cm’ 95.00 Normal Infinite B 1.84 x 10” gm/cm’
€t +0.15 gm/cm’ 95.00 Normal Infinite B 0.077 gm/cm’

Using the data in Table 8-2, the uncertainty in 5, is computed to be

corr

(6.12x107) +(6.64x10°) +(2.9x107 ) +(-0.18 x1.84 107}’
= gm
+(-5.1x107 x0.077)

[

cal

—\3.75%107° +4.41x107"" +8.41x10° +1.1x107" +1.54x10” gm

=+4/3.75x107 gm=6.12x107 gm.

The effective degrees of freedom vt for Ucal can be estimated using the Welch-Satterthwaite
formula.

4

Vetf = Ucal
e 4 4 4 4 4 4 4
UmTE,b | UMTE.rep  UMTE.res Crlpy, N CoUpyur
VMTE.b  VMTE,rep  VMTE,res Yoy, Vouur
4
— Ucal
4 4 4 4 4 4 4
UmTE,b | UMTE.rep | UMTE,res Crlp,, N C2Upuur
0 2 o0 o0 o0
4
=2 x 4Ucal
UMTE, rep
Therefore, the degrees of freedom are computed to be
-2 4
6.12x10 ) v N
Verg =2 X +=2x(092x10*) =2x9.2x10"° = o0
(6.64x107° )

The results for the calibration of the 30 gm UUT mass are reported as

X, = 30 gm

O = —25%x10" gm

corr
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Ucal = 6.13 x 102 gm , infinite degrees of freedom.

8.6.2 Scenario 2: The UUT Measures the MTE Attribute Value

In this scenario, the measurement result is 6= X — Y and & is expressed in equation (8-26). The
example for this scenario consists of calibrating an analog micrometer with a 10 mm gage block
reference. Multiple readings of the 10 mm gage block length are taken with the micrometer
under laboratory environmental conditions of 24 °C + 1 °C. The sample statistics are computed
to be

Sample Mean = 9.999 mm
Standard Deviation = 21.7 um
Uncertainty in Mean = 7.7 um
Sample Size = 8

The measurement result is & = (9.999 — 10) mm =—1 um. However, both the micrometer
reading and the gage block length must be corrected to 20 °C standard reference temperature. In
this example, the gage block steel has a coefficient of thermal expansion of ayre = 11.5 x 10°
8/°C and the micrometer has a coefficient of thermal expansion of ayyr = 5.6 x 10% °C. For the
purposes of this analysis, the uncertainties in amte and ayut are assumed to be negligible.

The net effect of thermal expansion on the measurement result & is

5env = 5UUT,env - §MTE,env

where gum env and gMTE,env represent thermal expansion of the micrometer and gage block

dimensions, respectively. The net length expansion is computed from the temperature difference
AT, the average measured length X, the coefficient of thermal expansion for the gage block amre
and the coefficient of thermal expansion for the micrometer ayyr.

é_‘env = AT x X x (aUUT - aMTE)
=4°Cx9.999mmx(5.6-11.5)x107°/°C
=-236x10"mm= —0.236um

The corrected calibration result J.

o 18 computed to be

0,

corr

=8+ 0,y
= —(1+0.236)um
=—1.24pm

In the micrometer calibration scenario, the following measurement process errors must be taken
into account:

o Bias in the value of the 10 mm gage block length, eprep.
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 Error associated with the repeat measurements taken, eyur rep.
o Error associated with the analog resolution of the micrometer, eyuyr,res.

 Bias resulting from the operator’s use of the micrometer to measure the gage block,
€uuT,op-
e Environmental factors error resulting from the thermal expansion correction, €gpy.

The error in &, is

gcal = eMTE,b + eUUT,rep + eUUT,res + eUUT,op + eenv

where
€y = Ear X Y(05UUT — Oyt ) = Car€ar

and Cat is the sensitivity coefficient and e,t is the error due to the environmental temperature
variation.

The uncertainty in &, is

ucal = \/ Var(gcal)

= \/ var (eMTE,b ) + var (eUUT,rep ) + var (eUUT,res ) + var (eUUT op ) + CiT var (eAT )

_ 2 2 2 2 2 .2
- \/ uMTE,b + uUUT,rep + uUUT,res + uUUT ,op + CAT uAT .

The distributions, limits, confidence levels and standard uncertainties for each error source are
summarized in Table 8-3.

Table 8-3. Summary of Scenario 2 Uncertainty Estimates

Error Conf. Degrees Standard

Error Limits Level Error of Analysis | Uncertainty | Sensitivity
Source (pm) (%) | Distribution | Freedom | Type (pm) Coefficient
ewrep |+ 0.18,-0.13 um| 90.00 | Lognormal | Infinite B 0.09 um 1

BUUT rep Student’s t 7 A 7.7 pm 1

EUUT, res +5.0 um 95.00 Normal Infinite B 2.6 pm 1

BuuT,0p +5.0 um 95.00 Normal Infinite B 2.6 um 1

eaT +1°C 95.00 | Normal Infinite B 0.51°C  -5.9x10” um/°C

Using the data in Table 8-3, the uncertainty in Jorr 18

Upy = \/(0.09)2 +(7.7) +(26) +(2.6)° +(-5.9x107 x0.51)" pm

= \/ 0.0081+59.29 +6.76 + 6.76 + 0.0009 um

=,/ 72.82 ym = 8.53pm
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The effective degrees of freedom for Ucg are computed using the Welch-Satterthwaite formula.

4
Ucal

V,
eff 4 4 4 4 4 4
u UguT,rep U UyuT,op = CatU
MTE,b n ,rep i UUT ,res n ,0p n AT YAT

VMTE,b  YUUT,rep  YUUT,res  YUUT,op VAT

4
Ucal

4 4 4 4 4 4

u Uyut U Ugut CaTU
MTE,b n ,rep " UUT ,res n ,0p n AT YAT
0 7 0 0 0

4
=7 x Ucal

7 .
uUUT,rep

The degrees of freedom are computed to be

8.53
Veff =7X( 77

4
j =7x(1.108)" =7x1.507 =10.6

The results for the calibration of the micrometer at 10 mm nominal length are reported as

10 mm

Yn
5. = —124um

corr

Ueal = 8.53 um, 11 degrees of freedom.

8.6.3 Scenario 3: MTE and UUT Attribute Values are Compared

In this scenario, the measurement result is 0= X — Y and & is expressed in equation (8-39). The
example for this scenario consists of calibrating an end gauge, with a nominal length of 50 mm,
using an end gauge standard of the same nominal length. The calibration process consists of
measuring and recording the difference between the two end gauges using a comparator
apparatus.

In this case, the difference in the lengths of the two end gauges are measured. The sample
statistics are computed to be

Sample Mean = 215nm
Standard Deviation = 9.7 nm
Uncertainty in Mean = 4.33 nm
Sample Size =5

and the measurement result is 6 =215nm. The temperature for both end gauges during
calibration is 19.9 °C £ 0.5 °C. Consequently, the calibration result must be corrected to the

standard reference temperature of 20 °C. The corrected calibration result gm is computed from
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§corr = 5_ + é_‘env
= 5_ + é_‘UUT,env - gMTE,env
where
SUUT,enV =AT xXxay,;; = thermal expansion of the UUT end gage
S,

wreenw = AT XY xaye = thermal expansion of the MTE end gage

X = the average UUT end gage length during calibration

y = the average MTE end gage length during calibration
aupur = coefficient of thermal expansion for the UUT end gauge
OMTE coefficient of thermal expansion for the MTE end gauge

AT = difference in the temperature of the end gauge from the 20 °C

For the purposes of this example, we will assume that ayyr = amte = o= 11.5 x 10°%/°C.
Therefore, 0.

o Can be expressed as

and is computed to be

S = 215nm(1—0.1°C><11.5><10’6 /°C)

corr

=215nm(1— 1.15><10'6)
~215nm.

In the end gauge calibration scenario, the following measurement process errors must be taken
into account:

e Bias in the value of the 50 mm end gage standard length, emrep.

e Bias of the comparator, ecp

 Error associated with the repeat measurements taken, €rep.

o Digital resolution error for the comparator, €yes.

 Operator bias, €qp

o Environmental factors error resulting from the thermal expansion correction, €epy.

As shown in equations (8-37) through (8-39), the comparator bias cancels out and the error in

o, 1is

corr

Eal = erep T € t eop € — eMTE,b

where

€., =6

rep UUT ,rep €

MTE,rep = eg‘,rep

eres = eUUT,res - eMTE,res
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eenv = eUUT,env - eMTE,env = eg,env
and

.. =Cey +CeE,.

5.env

The uncertainty in &, is

ucal = Var(gcal)

- \/mr (eg,rep ) +var (Byyr res — Cureres ) + Var (C,&4r +C,€, ) + Var( €0p ) + var (= eyre, )

= \/ué,rep + UL21UT,res + ui/ITE,res - 2prequUT,resuMTE,res + CfuﬁT + szui +2C,C, Pen Uyt U, + u(fp + uiATE,b .
The UUT and MTE resolution uncertainties are equal to the comparator resolution uncertainty,
UuuT.res = UMTEres = Ucres. In addition, the UUT and MTE resolution errors are uncorrelated, so
that pres = 0. The UUT and MTE end gage length expansion corrections will err in the same
direction and by a constant proportional amount, so that pep, = 1. Therefore, the uncertainty Ucg
can be expressed as

2 2 2,2 2,2 2 2
Uear = \/ug,rep +2Ug o + G Uyp + CoU, +2C,CU, g U, + Upp T Unrep
2

2 2 2
=\/U5,rep +2U7 s +(C Uy +CU, )+ Unre

c,res

The sensitivity coefficients C; and C; are

¢, = 0 _ 5 —11.5x10°/°Cx215nm ¢, = 2% _ ATF = ~0.1°Cx215mm
OAT and o
=2.47%x10"nm/°C =—-21.5°C enm

Using the data in Table 8-4, the uncertainty in J_,, is

corr

The distributions, limits, confidence levels and standard uncertainties for each error source are
summarized in Table 8-4.

Table 8-4. Summary of Scenario 3 Uncertainty Estimates

Conf. Degrees Standard
Error Error Level Error of Analysis | Uncertainty Sensitivity
Source Limits (%) | Distribution | Freedom Type (nm) Coefficient
€5 rep Student’s t 4 A 4.33 nm 1
€c res + 1 nm 100.0 Uniform Infinite B 0.577 nm 1
eur +0.5°C 95.00 Normal Infinite B 0.255 °C 2.47x107 nm/°C
€, +0.5x10° /°C| 95.00 | Normal Infinite B 0.255x10°/°C| -21.5 °Cenm
€op +5nm 95.00 Normal Infinite B 2.55 nm 1
eMTED Normal 18 AB 25 nm 1
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Uy = \/(4.33)2 +2x(0.577) +(2.47x107 x0.255-21.5x0255x10° )" +(2.55)" +(25) nm

=/18.754+0.67+3.90x 10”7 +6.51 + 625 nm
=+/650.9 nm = 25.5nm.
The effective degrees of freedom for Ucy are computed using the Welch-Satterthwaite formula.

4
Ucal

) rep u Ciu Cyu uM TE.b
> 2 c,res 1 YA 2 >

Vs, rep Veoress VAT Vo  VMTE,b

4 4
Ucal Ucal

4 4 4 4 4 4 4 4 4

u u u u u

) c,iu c,u 5
,rep 12 c,res n 1 YAT n 2Ua n MTE,b ,rep n MTE,b
5 0 o0 o0 18 5 18

The degrees of freedom are computed to be

(255)" 423,680 _423,6808
(4,33)4+(25)4 70.3+21,701.4  21,771.7

5 18

Veff =

The results for the calibration of the UUT end gauge with 50 mm nominal length are reported as

X 50 mm

n

O0. = 215nm

corr

Ucal = 25.4 nm, 20 degrees of freedom.

8.6.4 Scenario 4: The MTE and UUT Measure a Common Artifact

For this scenario, both the MTE and UUT measure the value or output of a common artifact.
The measurement result is 6= X —Y and & is expressed in equation (8-48).

The example for this scenario consists of calibrating a digital thermometer at 100 °C using an
oven and an analog temperature reference. The oven temperature is adjusted using its internal
temperature probe and the readings from the thermometer and temperature reference are
recorded. The resulting sample statistics are computed to be

Sample Mean, UUT = 100.50 °C Sample Mean, MTE = 100.000 °C
Standard Deviation, UUT = 0.03 °C Standard Deviation, MTE = 0.006 °C
Uncertainty in Mean, UUT = 0.01 °C Uncertainty in Mean, MTE = 0.002 °C
Sample Size =9 Sample Size =9

and the measurement result is & =100.50 —100.000 = 0.50°C . In the thermometer calibration
scenario, the following measurement process errors must be taken into account:
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o Bias of the temperature reference, emre p.

 Error due to repeat measurements taken with the temperature reference, emre rep.

 Error due to repeat measurements taken with the thermometer, eyur rep.

e Analog resolution error for the temperature reference, emte res.

o Digital resolution error for the thermometer, yyr res.

e Error due to the non-uniformity of the oven temperature, €epy.

The short-term effect of oven stability is accounted for in the sample of MTE measurements. If
repeat measurements were not collected, then the error due to oven stability would be included as

part of the environmental factors error, €epy.

The errorin & 1s

Eal = (eUUT,rep - eMTE,rep) + (eUUT,res

The uncertainty in & is

ucal = \/ Var(gcal)

= \/V3r(_eMTE,b) + Var(eUUT,rep - eMTE,rep) + Var(eUUT,res - eMTE,res) + var (eenv)

. 2 2
- \/UMTE,b + uUUT,rep +Uu

The distributions, limits, confidence levels and standard uncertainties for each error source are

- eMTE,res) - eMTE,b e

summarized in Table §-5.

2

2

MTE,rep + uUUT,res + uMTE,res

2
+ Uy -

Table 8-5. Summary of Scenario 4 Uncertainty Estimates

Error | Confidence Degrees Standard

Error Limits Level Error of Analysis | Uncertainty

Source (°C) (%) Distribution | Freedom | Type (°C)
EMTE,b Normal 29 A,B 0.02
€UUT.rep Student’s t 8 A 0.22
EMTE,rep Student’s t 8 A 0.075
BUUT res +0.005 100.00 Uniform infinite B 0.0029
EMTE.res +0.0025 95.00 Normal infinite B 0.0013
€eny +2 95.00 Normal Infinite B 1.02

Using the data in Table 8-5, the uncertainty in & is

U =/(0.02)" +(0.22)" +(0.075)" +(0.0029)’ +(0.0013)’ +(1.02)’ °C
= /0.0004 + 0.0484 + 0.0056 + 0.000008 + 0.000002 +1.0404 °C

=+1.095°C=1.05 °C

The Welch-Satterthwaite formula for the effective degrees of freedom for Ucg is
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4
u

_ cal

Veff =

2 4 4 4 4 4
u Ugut,rep  UMTE,rep U u u
MTE,b + ,rep + ,rep + UUT ,res + MTE,res + env

VMTE,b YUUT,rep  YMTE,rep  YUUT,res VMTE,res  Venv

4
_ Ucal

4 4 4 4 4 4
u Uuut UmTE U u u
MTE,b n UUT ,rep n ,rep " UUT ,res i MTE,res 4 Clenv
29 8 8 o0 0 0
4
_ Ucal

4 4 4 :
uMTE,b N uUUT,rep " uMTE,rep
29 8 8

The degrees of freedom are computed to be

(1.05)*

(0.02)* . (0.22)* . (0.075)*
29 8 8
~ 1.22
5.52x107° +2.93x107* +3.96x107

122
2.97x107*

Veff =

=4095.6

The results for the calibration of the UUT digital thermometer at 100 °C nominal temperature are
reported as

X = 100.50 °C
y = 100.000 °C
o = 0.50°C

Ucat = 1.05 °C, infinite degrees of freedom.
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CHAPTER 9: UNCERTAINTY GROWTH

Over time, the error or bias in an MTE attribute or parameter may increase, remain constant or
decrease. The uncertainty in this error, however, always increases with time since measurement
or calibration. This is the fundamental postulate of uncertainty growth. This chapter discusses
the methodology to project the growth in the MTE attribute or parameter bias uncertainty.®

Figure 9-1 illustrates uncertainty growth over time for a typical attribute or parameter bias, &,.
The sequence shows the probability distribution at three different times, with the uncertainty
growth reflected in the spreads in the curves. The out-of-tolerance probabilities at the different
times are represented by the shaded areas under the curves.

/ e
K

Attribute Bias
Figure 9-1. Measurement Uncertainty Growth

f(&)

&

Uncertainty growth over time corresponds to an increase in out-of-tolerance probability over
time, or equivalently, to a decrease in in-tolerance probability or measurement reliability R(t)
over time. Plotting R(t) versus time, as shown in Figure 9-2, suggests that measurement
reliability can be modeled by a time-varying function. Once this function is determined, then
MTE parameter bias uncertainty can be computed as a function of time.

R(t)
Reliability Target

L N\

Calibration
Interval

Time Since Calibration (t)

Figure 9-2. Measurement Reliability versus Time

9.1 Basic Methodology

The uncertainty, u(t), in the parameter bias, &, (1), at time t elapsed since measurement is

8 Dr. H. Castrup, “Uncertainty Growth Estimation in UncertaintyAnalyzer,” Integrated Sciences Group Technical Report, March
27, 2002. Revised June 17, 2008.
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computed using the value of the initial measurement uncertainty and the reliability model for the

parameter population. The basic concept is an extension of the ergodic theorem® that states that

the distribution of an infinite population of values at equilibrium is identical to the distribution of
values attained by a single member sampled an infinite number of times.

The reliability model predicts the in-tolerance probability for the parameter bias population as a
function of time elapsed since measurement. It can be thought of as a function that quantifies the
stability of the population. In this view, we begin with a population measurement reliability
immediately following measurement at time t = 0 and extrapolate to the measurement reliability
at time t > 0. The measurement reliability of the parameter bias at time t is related to the bias
uncertainty according to

L
RM)= | flep®]de, 9-1)

where f[&y(t)] is the probability density function (pdf) for the parameter bias and —L; and L, are
the tolerance limits. For example, if we assume that gy(t) is normally distributed, then

flen(t)]= —Jz_;u(t) e [ O-aO] 2 () (9-2)

where u(t) represents the expected or true parameter bias at time t. The relationship between L,
L, ap(t) and z4(1) is shown in Figure 9-3, along with the distribution of the population of biases
for the measurement parameter of interest.

f&(®)]

Parameter Bias
Distribution

&(1)
-L, () L, ’
Figure 9-3. Parameter Bias Distribution

At time t, £(t) is defined by the relation

w(t) = o + a(t) (9-3)

6 See for example, Gray, R. M.: Probability, Random Processes, and Ergodic Properties, Springer-Verlag 1987. Revised 2001
and 2006-2007 by Robert M. Gray.
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where 1 is the true parameter bias at t = 0 and (1) is a drift function.®

At the time of measurement (t = 0), a value for 1 is estimated (measured) and the uncertainty in
this estimate is designated Uo. The following section discusses a method for calculating u(t),
given Uy.

9.2 Projected Uncertainty

Given the reliability model for the individual parameter bias and its initial uncertainty, the
uncertainty U(t) in equation (9-1) could be obtained directly by iteration or other means.
However, available information typically relates only to the characteristics of the reliability
model for the population to which the parameter belongs. Therefore, the reliability model for the
population is applied.

Using a population reliability model to estimate uncertainty growth for an individual parameter
employs the following set of assumptions:

1. The result of a measurement is an estimate of a parameter’s value or bias.
This result is accompanied by an estimate of the uncertainty in the parameter’s
bias.

2. The uncertainty of the measured parameter’s bias or value at time t =0
(immediately following measurement) is the estimated uncertainty of the
measurement process.

3. The measured parameter bias or value is normally distributed around the
measurement result.

4. The stability of the parameter is equated to the stability of its population. This
stability is represented by the population’s reliability model.

5. Therefore, the uncertainty in the parameter’s bias or value grows from its
value at t = 0 in accordance with the reliability model of the parameter’s
population.

The expressions used to compute uncertainty growth vary depending on whether the parameter
tolerances are two-sided, single-sided upper or single-sided lower.

9.2.1 Two-Sided Tolerances

From equations (9-1) and (9-2), the reliability function for parameters with two-sided tolerance
limits is given by

1 b [ap—u®] 1203 (1)
Rt)=———— [ e l57# dep, . 9-4
® J27zu(t) _L “ &4

We define a variable C as
gp(t) — (t)

S

85 The drift function can be a linear or other mathematical relation. The only restriction is that att =0, o(t) = 0.
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so that dgy =u(t)dd . Using substitution of variables, equation (9-4) becomes

1 [L-u]/um

R(t) = — [ e¢ 24,
2z —[L+u®]/ut) (9-5)
_plbtH® ) o L-r®
u(t) u(t)
where the function @(-) is defined by
D(2) :ﬁ ? e_gz/zdg .
At t =0, the reliability function is
R(0) = @ Ly +u(0) +® Ly —u(0) -1 (9-6)
u(0) u(0)

where £4(0) is set equal to the mean or average value obtained from a sample of measurements or
to the value obtained as a Bayesian estimate.®®

If 1(0) is set equal to a sample mean value, Uy is set equal to the combined uncertainty estimate
for the mean value. If 1(0)is set equal to a Bayesian estimate, U(0) is set equal to the uncertainty
of the Bayesian estimate.

Equations (9-5) and (9-6) are used to estimate uncertainty growth. Since this growth consists of
an increase in the initial uncertainty estimate, based on knowledge of the stability of the
parameter population, it should not be influenced by the quantity z(t). Accordingly, two
reliability functions, Ry and R;, are defined by

Ry = @ (i] + @ (i] ~1 (9-7)
UO ! UO !

ol Lo 2] 09
Ut Ut

where Ry and R; are computed from the population reliability models at times 0 and t,
respectively.

and

Next, the variables Uy ' and U; ' are solved for iteratively using the bisection method.”” The

% Bayesian analysis is discussed in Appendix E.
67 See Chapter 9 of Press, et al., Numerical Recipes in Fortran, 2" Ed., Cambridge University Press, 1992.
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solutions are used to obtain U(t) from the following relation
Ug '
u(t) =u(0)—. (9-9)
Uo

The in-tolerance probability at time t is then solved for using equation (9-5). A “best” estimate
for s 1s obtained using equation (9-3). If the function o(t) is not known, the last known value of
1, namely £40), is used. If this is the case, substituting £4(0) for & in equation (9-5) gives an
estimate of the in-tolerance probability at time t > 0.

R(t) ;q{ﬂ}m{w}l (9-10)
u(t) u(t)

9.2.2 Two-Sided Symmetric Tolerances

If the tolerance limits are symmetric, then L; = L, = L and equations (9-7) through (9-10) are
applied. In cases where £ = 0, then equations (9-7) and (9-8) become

Ro =2CD(L']—1 (9-11)
Uo
and
L
R =2® [—']—1. (9-12)
Ut
The variables Uy ' and U; ' are
L
Up'= (9-13)
(I)_l (1 + RO J
2
and
L
U'=————~. (9-14)
CD_l (1 + Rt j
2
Applying equation (9-9), u(t) is computed from
(D_l (1 + RO j
2
ut) =u(0) ————=. 9-15
® ()®—1(1+Rtj (9-15)
2
The in-tolerance probability at time t > 0 is
L
R(t)z=2d| — |-1. (9-16)
u(t)
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9.2.3 Single-Sided Tolerances

In cases where tolerances are single-sided, either L, or L; is infinite. For single-sided lower
limit cases, Li=L, L, =0 and equation (9-5) becomes

R(t)=® L+u®) +q)(oo_—ﬂ(t)]_1
u(t) u(t)

—o| EFHO L g (o0) -1

u(t)
=0 M +1-1
u(t)
_o| LtHO)
u(t)

(9-17)

Equation (9-6) similarly becomes

_of LT HO _
mm_®( 50 ) (9-18)

For single-sided upper limit cases, L= o0, L, = L and equations (9-5) and (9-6) become
R(t)=® Lﬂ(t) +® ﬂ -1
u(t) u(t)

=®(L—ﬂaq
u(t)

(9-19)

and

(V) ]
mm_®t36TJ. (9-20)

For both single-sided upper limit and single-sided lower limit cases, equations (9-7) and (9-8)
become

Ry = ®| = (9-21)
Uo
and
R=d| L |. (9-22)
Ut
The variables Uy ' and U; ' are
L
UO '= T (9-23)
™ (Ry)
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and

U ' = _IL (9-24)
" (Ry)
Applying equation (9-9), u(t) is computed from
-1
o (R
u(t) = u(O)# : (9-25)
O (Ry)
Applying equation (9-10), the in-tolerance probability at time t is
Ry =] EF4O) ) (9-26)
u(t)

9.3  Reliability Models

In the uncertainty growth projection process, information about the calibration history of the
parameter population is used to develop a reliability model. This reliability model provides a
means for determining how the parameter bias uncertainty grows with time since calibration.

Each reliability model is defined by a mathematical equation with coefficients. A calibration
interval analysis program can be used to determine the reliability model that "best fits" a
parameter’s calibration history data and to compute the corresponding model coefficients. If a
reliability modeling application is not accessible, then an applicable reliability model must be
chosen based on knowledge about the stability of the subject parameter over time.

Commonly used reliability models are described in the following subsections along with
information needed to implement them. Guidance on the selection and application of these
reliability models can be found in NCSL RP-1 Establishment and Adjustment of Calibration
Intervals.®®

9.3.1 Exponential Model
The exponential reliability model is defined by the mathematical equation

R(t) = ae ™ (9-27)

where a and b are the model coefficients. An example plot for the exponential model is shown
in Figure 9-4.

The exponential model is useful for parameters whose failure probability is not a function of
time since last measurement. That is, the probability of going out-of-tolerance in the interval
T, beginning at some time t, is the same as the probability of going out-of-tolerance in the same
time interval T, beginning at some other time t'.

88 NCSL, Establishment and Adjustment of Calibration Intervals, Recommended Practice RP-1, National Conference of
Standards Laboratories, January 1996.
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Figure 9-4. In-tolerance Probability versus Time — Exponential Model

To implement the exponential model, either of the following must be known:

1. The value of the model coefficients, a and b.

2. The beginning of period (BOP) in-tolerance probability and the end of period
(EOP) in-tolerance probability.

9.3.2 Mixed Exponential Model
The mixed exponential reliability model is defined by the mathematical equation

b
)
b
where a and b are the model coefficients. An example plot for the exponential model is shown
in Figure 9-5.

R(t) = (9-28)

The mixed exponential model is useful for parameters whose out-of-tolerance behavior depends
on a number of constituent parameters, each of which can be represented with the exponential
model and where the coefficient b is gamma distributed.

1.0 7
Calibration interval = 1 year

0.8 AOP in-tolerance probability = 0.85

T EOP in-tolerance probability = 0.75
R(0) 0.6 7
0.4
0.2

0.0 T T T T ]

0 2 4 6 8 10

Time Since Measurement (years)
Figure 9-5. In-tolerance Probability versus Time — Mixed Exponential Model

To implement the mixed exponential model, either of the following must be known:
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1. The value of the model coefficients, a and b.

2. The average over period (AOP) and EOP in-tolerance probabilities.

9.3.3 Weibull Model
The Weibull reliability model is defined by the mathematical equation

R(t) =ae (")’ (9-29)

where a, b and ¢ are the model coefficients. An example plot for the Weibull model is shown in
Figure 9-6.

1.0 7
\ Calibration interval = 1 year

iR — BOP in-tolerance probability = 0.99

0.8 AOP in-tolerance probability = 0.95

R(t EOP in-tolerance probability = 0.85
® 6 -
0.4 7
0.2

0.0 T T T 1

0 1 2 3 4 5

Time Since Measurement (years)
Figure 9-6. In-tolerance Probability versus Time — Weibull Model

The Weibull model is useful for parameters that go out-of-tolerance as a result of gradual wear or
decay.

To implement the Weibull model, either of the following must be known:

1. The value of the model coefficients, a, b and c.
2. The BOP, AOP and EOP in-tolerance probabilities.

9.3.4 Gamma Model
The gamma reliability model is defined by the mathematical equation

2 3
R(t) = ae ™ [1+bt+%+@] (9-30)

where a and b are the model coefficients. An example plot for the gamma model is shown in
Figure 9-7.

The gamma model is useful for parameters that go out-of-tolerance in response to some number
of events, such as being activated and deactivated.
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Figure 9-7. In-tolerance Probability versus Time — Gamma Model.

To implement the gamma model, either of the following must be known:

1. The value of the model coefficients, a and b.

2. The BOP and EOP in-tolerance probabilities.

9.3.5 Mortality Drift Model
The mortality drift reliability model is defined by the mathematical equation

—(bt+ct2)

R(t) = ae (9-31)

where a, b and ¢ are the model coefficients. An example plot for the mortality drift model is
shown in Figure 9-8.

Calibration interval = 1 year

1.0 7
N BOP in-tolerance probability = 0.98
08 - AOP in-tolerance probability = 0.93
' EOP in-tolerance probability = 0.90
R(t) 0.6 -
0.4 1
0.2 1
0.0 ‘\ T T T 1
0 1 2 3 4 5

Time Since Measurement (years)
Figure 9-8. In-tolerance Probability versus Time — Mortality Drift Model

The mortality drift model is useful for parameters that are characterized by a slowly-varying out-
of-tolerance rate.

To implement the mortality drift model you need to know either of the following:

1. The value of the model coefficients, a, b and c.
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2. The BOP, AOP, and EOP in-tolerances.

9.3.6 Warranty Model
The warranty reliability model is defined by the mathematical equation

1

] +2(t-D)

R(t) = (9-32)

where a and b are the model coefficients. An example plot for the warranty model is shown in
Figure 9-9.

1.0 7
| Calibration interval = 1 year
0.8 1 ~ BOP in-tolerance probability = 1.00
' EOP in-tolerance probability = 0.85
R® 16
0.4 7
0.2
0'0 T T T 1
0 1 2 3 4 5

Time Since Measurement (years)
Figure 9-9. In-tolerance Probability versus Time — Warranty Model

The warranty model is useful for parameters that tend to stay in-tolerance until reaching a well-
defined cut-off time, at which point, they go out-of-tolerance.

To implement the warranty model, one of the following must be known:

1. The value of the model coefficients, a and b.
2. The BOP and EOP in-tolerance probabilities.

9.3.7 Random Walk Model

The random walk reliability model is defined by the mathematical equation

1
R(t) =erf (mj (9-33)

where erf is the error function® and a and b are the model coefficients. An example plot for the
random walk model is shown in Figure 9-10.

The random walk model is useful for parameters whose values fluctuate in a purely random way
with respect to magnitude and direction (positive or negative).

% See Chapter 7 of Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards, 1970. This handbook is eventually to be replaced by the NIST Digital
Library of Mathematical Functions (http://dlmf.nist.gov/) which is currently under development.
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Figure 9-10. In-tolerance Probability versus Time — Random Walk Model
To implement the random walk model, one of the following must be known:

1. The value of the model coefficients, a and b.

2. The BOP and EOP in-tolerance probabilities.
9.3.8 Restricted Random Walk Model

The restricted random walk reliability model is defined by the mathematical equation

\/a+b(1—e_0t)

where a, b and ¢ are the model coefficients. An example plot for the restricted random walk
model is shown in Figure 9-11.

R(t) =erf (9-34)
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Figure 9-11. In-tolerance Probability versus Time — Restricted Random Walk Model

The restricted random walk model is similar to the random walk model, except that parameter
fluctuations are confined within a restricted region around a mean or nominal value.
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To implement the restricted random walk model, one of the following must be known:

1. The value of the model coefficients, a, b and c.

2. The BOP, AOP, and EOP in-tolerances.

9.4  Analysis Example

For illustrative purposes, let us consider an MTE attribute or parameter that comes from a
population whose in-tolerance probability over time can be characterized by the gamma model
described in section 9.3.4. For this example, the MTE parameter is calibrated annually and the
BOP and EOP reliabilities are 0.98 and 0.90, respectively.

From equation (9-30), expressing time t in units of years,
. X b2 b3
Ry=R(0)=ae [1]=a=0.98 and R;=R(1)=0.98¢" 1+b+7+z =0.90.

From iteration, the coefficient b is found to be equal to 1.62.

Now, let us assume that the MTE parameter is a 10 VDC output from a multifunction calibrator.
We will also assume that the parameter tolerance limits are £ 5 pV. During calibration, the
parameter bias uncertainty u(0) is estimated to be 1.5 puV.

Applying the gamma model, we can estimate the uncertainty growth 6 months (0.5 years) after
calibration. In this case, t= 0.5 years, bt =1.62 x 0.5 = 0.81 and the in-tolerance probability is
computed to be

2 3
R R(0-5)0-9880'81[1+0.81+(0'821) +(0-861) ]

— 0.98 x 0.44486 {1 0.1y 20561 0.5314}

6
=0.98 x0.44486 x [1 +0.81+0.3281 + 0.0886]
=0.98x0.44486 x2.2266 = 0.9707

From equation (9-15), the parameter bias uncertainty at 0.5 years since calibration is projected to
be

(D_l 1+ RO (I)_l 1+0.98 »
2 2 ® (0.99)
! [Zt] ! (+2j @~ (0.985)

2'3262 =1.5uV x1.0673 = 1.60 uV.

=1.5pV x
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APPENDIX A — TERMS AND DEFINITIONS

It has been a goal of the authors to use consistent terminology throughout this document, even
though the terms and definitions employed are designed to be understood across a broad
technology base. Where appropriate, terms and definitions have been taken from internationally
recognized standards and guidelines in the fields of testing and calibration.

Term
a priori value

Acceleration Error

Acceleration Sensitivity

Accuracy

Adjusted Mean

Amplifier

Analog to Digital Converter
(ADC)

Analog Signal

Arithmetic Mean

Artifact

Asymmetric Distribution

Attenuation

Attribute

Attribute Bias

Average

Definition
A value assumed before measurements are taken.

Under steady-state conditions, it is the maximum difference, at any
measurand value within the specified range, between output
readings taken with and without the application of specified
constant acceleration along specified axes. Acceleration error can
also result from dynamic conditions encountered in vibration and
shock environments.

See Acceleration Error.

Closeness of agreement between a declared or measured value of a
quantity and its true value.

In terms of instruments and other measuring devices, accuracy is
defined as the conformity of an indicated value to the true value or,
alternatively, to the value of an accepted standard.

The value of a parameter or error source obtained by applying a
correction factor to a nominal or mean value.

A device that increases the strength or amplitude of a signal.

A device that converts an analog signal to a digital representation
of finite length.

A quantity or signal that is continuous in both amplitude and time.

The sum of a set of values divided by the number of values in the
set.

A physical object or substance with measurable attributes.

A probability distribution in which deviations from the population
mode value of one sign are more probable than deviations of the
opposite sign. Asymmetric distributions have a non-zero
coefficient of skewness.

Reduction of signal strength, intensity or value.

A measurable characteristic, feature, or aspect of a device, object
or substance.

A systematic deviation of an attribute’s nominal or indicated value
from its true value.

See Arithmetic Mean.
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Average-Over-Period (AOP) The in-tolerance probability for a parameter averaged over its

Reliability

Bandwidth

Beginning-of-Period (BOP)

Reliability

Between Sample Sigma

Bias

Bias Offset

Bias Uncertainty

Bit

Calibration

Calibration Interval

Characteristic

Combined Error

Combined Uncertainty

Common Mode Rejection
(CMR)

Common Mode Rejection
Ratio (CMRR)

calibration or test interval. The AOP measurement reliability is
often used to represent the in-tolerance probability of a parameter
for a measuring device whose usage demand is random over its test
or calibration interval.

The range of frequencies that a device is capable of generating,
handling, or accommodating; usually the range in which the
response is within 3 dB of the maximum response.

The in-tolerance probability for an MTE attribute or parameter at
the start of its calibration or test interval.

The standard deviation representing the variation of values
obtained for different samples taken on a given quantity.

A systematic discrepancy between an indicated, assume or
declared value of a quantity and the quantity’s true value. See also
Attribute Bias and Operator Bias.

See Offset from Nominal.

The uncertainty in the bias of an attribute or error source quantified
as the standard deviation of the bias probability distribution.

A single character, 0 or 1, in a binary numeral system (base 2). The
bit is the smallest unit of storage currently used in computing.

A process in which the value of an MTE attribute or parameter is
compared to a corresponding value of a measurement reference,
resulting in (1) the determination that the parameter or attribute
value is within its associated specification or tolerance limits, (2) a
documented correction of the parameter or attribute value, or (3) a
physical adjustment of the parameter or attribute value.

The scheduled interval of time between successive calibrations of
one or more MTE parameter or attribute.

A distinguishing trait, feature or quality.
The error comprised of a combination of two or more error
sources.

The uncertainty in a combined error.

The common mode rejection ratio is often expressed in dB using
the following relationship: CMR = 20 log(CMRR).

CMRR describes the ability of a differential amplifier to reject
interfering signals common to both positive and negative input
terminals, and to amplify only the difference between the inputs.

Normally defined as the ratio of the signal gain to the ratio of

normal mode voltage to the common mode voltage.
CMMR = Gain/(NMV/CMV).
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Common Mode Voltage
(CMV)
Compensation

Component Uncertainty

Computation Error

Computed Mean Value

Confidence Level

Confidence Limits

Containment Limits

Containment Probability

Correlation Analysis

Correlation Coefficient

Counts

Covariance

Coverage Factor

Cross-correlation

Cumulative Distribution
Function

A voltage which is common to both input terminals of a
differential device.

Provision for a supplemental device, circuit, or special materials to
counteract known sources of error.

The product of the sensitivity coefficient and the standard
uncertainty for an error source.

The error in a quantity obtained by computation. Computation
error can result from machine round-off of values obtained by
iteration or from the use of regression models. Sometimes applied
to errors in tabulated physical constants.

The average value of a sample of measurements.

The probability that a set of tolerance or containment limits will
contain a given error.

Limits that bound errors for a given source with a specified
confidence level.

Limits that are specified to contain either an attribute or parameter
value, an attribute or parameter bias, or other measurement errors.

The probability that an attribute or parameter value or error in the
measurement of this value lies within specified containment limits.

An analysis that determines the extent to which two random
variables influence one another. Typically the analysis is based on
ordered pairs of values. In the context of measurement uncertainty
analysis, the random variables are error sources or error
components.

A measure of the extent to which two errors are linearly related. A
function of the covariance between the two errors. Correlation
coefficients range from minus one to plus one.

The total number of divisions into which a given measurement
range is divided. For example, a 5-1/2 digit voltmeter has +/-
199,999 or 399,999 total counts. The weight of a count is given by
Count Weight = Total Range/Total Counts.

The expected value of the product of the deviations of two random
variables from their respective means. The covariance of two
independent random variables is zero.

A factor used to express an error limit or expanded uncertainty as a
multiple of the standard uncertainty.

The correlation between two errors for two different components
of a multivariate analysis.

A mathematical function whose values F(X) are the probabilities
that a random variable assumes a value less than or equal to Xx.
Synonymous with Distribution Function.
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Damping

Dead Band

Degrees of Freedom

Deviation from Nominal
Digital to Analog Converter
(DAC)

Digital Signal

Direct Measurements

Display Resolution

Distribution Function

Distribution Variance

Drift

Dynamic Characteristics

Dynamic Range

Effective Degrees of
Freedom

End-of-Period (EOP)
Reliability

Equipment Parameter

The progressive reduction or suppression of the oscillation of a
system.

The range through which the input varies without initiating a
response (or indication) from the measuring device.

A statistical quantity that is related to the amount of information
available about an uncertainty estimate. The degrees of freedom
signifies how "good" the estimate is and serves as a useful statistic
in determining appropriate coverage factors and computing
confidence limits and other decision variables.

The difference between an attribute’s or parameter's measured or
true value and its nominal value.

A device for converting a digital (usually binary) code to a
continuous, analog output.

A quantity or signal that is represented as a series of discrete coded
values.

Measurements in which a measuring parameter or attribute X
directly measures the value of a subject parameter or attribute Y
(i.e., X measures Y). In direct measurements, the value of the
quantity of interest is obtained directly by measurement and is not
determined by computing its value from the measurement of other
variables or quantities.

The smallest distinguishable difference between indications of a
displayed value.

See Cumulative Distribution Function.

The mean square dispersion of a random variable about its mean
value. See also Variance.

A change in output over a period of time that is unrelated to input.
Can be due to aging, temperature effects, sensor contamination,
etc.

Those characteristics of a measuring device that relate its response
to variations of the physical input with time.

The range of physical input signals that can be converted to output
signals by a measuring device.

The degrees of freedom for Type B uncertainty estimates or a
combined uncertainty estimate.

The in-tolerance probability for an MTE attribute or parameter at
the end of its calibration or test interval.

A specified aspect, feature or performance characteristic of a
measuring device or artifact. Synonymous with MTE attribute or
parameter.
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Error

Error Component

Error Distribution

Error Equation

Error Limits

Error Model

Error Source

Error Source Coefficient
Error Source Correlation
Error Source Uncertainty
Estimated True Value
Excitation

Expanded Uncertainty

False Accept Risk (FAR)

Filter

Frequency Response

Full Scale Input (FSI)

Full Scale Output (FSO)

Gain

The arithmetic difference between a measured or indicated value
and the true value.

The total error in a measured or assumed value of a component
variable in a multivariate measurement. For example, in the
determination of the volume of a right circular cylinder, there are
two error components: the error in the length measurement and the
error in the diameter measurement.

A probability distribution that describes the relative frequency of
occurrence of values of a measurement error.

An expression that defines the combined error in the value of a
quantity in terms of all relevant process or component errors.

Bounding values that are expected to contain the error from a
given source with some specified level of probability or
confidence.

See Error Equation.

A parameter, variable or constant that can contribute error to the
determination of the value of a quantity.

See Sensitivity Coefficient.

See Correlation Analysis.

The uncertainty in a given error source.

The value of a quantity obtained by Bayesian analysis.

An external power supply required by measuring devices to
convert a physical input to an electrical output. Typically, a well-
regulated dc voltage or current.

A multiple of the standard uncertainty reflecting either a specified
confidence level or coverage factor.

The probability that a measuring equipment attribute or parameter,
accepted by conformance testing, will be out-or-tolerance. See
NASA-HNBK-8739.19-4 for alternative definitions and
applications.

A device that limits the signal bandwidth to reduce noise and other
errors associated with sampling.

The change with frequency of the output/input amplitude ratio (and
of phase difference between output and input), for a sinusoidally
varying input applied to a measuring device within a stated range
of input frequencies.

The arithmetic difference between the specified upper and lower
input limits of a sensor, transducer or other measuring device.

The arithmetic difference between the specified upper and lower
output limits of a sensor, transducer or other measuring device.

The ratio of the output signal to the input signal of an amplifier.
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Gain Error

Guardband

Heuristic Estimate

Histogram

Hysteresis

Hysteresis Error

Independent Error Sources

Instrument

In-tolerance

In-tolerance Probability

Kurtosis

Least Significant Bit (LSB)

Level of Confidence

Linearity

Mean Deviation

Mean Square Error
Mean Value

Mean Value Correction

Measurand

Measurement Error

The degree to which gain varies from the ideal or target gain,
specified in percent of reading.

A supplement specification limit used to reduce the risk of falsely
accepting a nonconforming or out-of-compliance MTE parameter.

An estimate resulting from accumulated experience and/or
technical knowledge concerning the uncertainty of an error source.

See Sample Histogram.

The lagging of an effect behind its cause, as when the change in

magnetism of a body lags behind changes in an applied magnetic
field.

The maximum separation due to hysteresis between upscale-going
and downscale-going indications of a measured value taken after
transients have decayed.

Error sources that are statistically independent. See Statistical
Independence.

A device for measuring or producing the value of an observable
quantity.

In conformance with specified tolerance limits.

The probability that an MTE attribute or parameter value or the
error in the value is contained within its specified tolerance limits
at the time of measurement.

A measure of the "peakedness” of a distribution. For example,
normal distributions have a peakedness value of three.

The smallest analog signal value that can be represented with an n-
bit code. LSB is defined as A/2", where A is the amplitude of the
analog signal.

See Confidence Level.

A characteristic that describes how a device's output over its range
differs from a specified linear response.

The difference between a sample mean value and a nominal value.
See Variance.

Sample Mean: The average value of a measurement sample.
Population Mean: The expectation value for measurements
sampled from a population.

The correction or adjustment of the computed mean value for an
offset due to parameter bias and/or environmental factors.

The particular quantity subject to measurement. (Taken from
Annex B, Section B.2.9 of the GUM)

The difference between the measured value of a quantity and its
true value.
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Measurement Process
Errors

Measurement Process
Uncertainty

Measurement Reference

Measurement Reliability

Measurement Uncertainty
Measurement Units
Measuring Device

Measuring and Test
Equipment (MTE)

Measuring Parameter

Median Value

Mode Value

Module Error Sources

Module Input Uncertainty

Module Output Equation

Module Output Uncertainty

Multiplexer

Errors resulting from the measurement process (e.g., measurement
reference bias, repeatability, resolution error, operator bias,
environmental factors, etc).

The uncertainty in a measurement process error. The standard
deviation of the probability distribution of a measurement process
error.

See Reference Standard.

The probability that an MTE attribute or parameter is in
conformance with performance specifications. At the measuring
device or instrument level, it is the probablity that all attributes or
parameters are in conformance or in-tolerance.

The lack of knowledge of the sign and magnitude of measurement
error.

The units, such as volts, millivolts, etc., in which a measurement or
measurement error is expressed.

See Measuring and Test Equipment.

A system or device used to measure the value of a quantity or test
for conformance to specifications.

The characteristic or feature of a measuring device that is used to
obtain information that quantifies the value of the subject or unit-
under-test parameter.

(1) The value that divides an ordered sample of data in two equal
portions. (2) The value for which the distribution function of a
random variable is equal to one-half.

The value of a parameter most often encounter or measured.
Sometimes synonymous with the nominal value or design value of
a parameter.

Sources of error that accompany the conversion of module input to
module output.

The uncertainty in a module's input error expressed as the
uncertainty in the output of the preceding module.

The equation that expresses the output from a module in terms of
its input. The equation is characterized by parameters that
represent the physical processes that participate in the conversion
of module input to module output.

The combined uncertainty in the output of a given module of a
measurement system.

A multi-channel device designed to accept input signals from a
number of sensors or measuring equipment and share downstream
signal conditioning components.
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Multivariate Measurements

Noise

Nominal Value

Nonlinearity

Normal Mode Voltage

Offset

Operating Conditions

Operator Bias

Output Device

Parameter

Parameter Bias

Population

Population Mean

Precision

Probability
Probability Density

Function (pdf)

Quantization

Quantization Error

Random Error

Measurements in which the value of a subject parameter is a
computed quantity based on measurements of two or more
attributes or parameters.

Signals originating from sources other than those intended to be
measured. Noise may arise from several sources, can be random
or periodic, and often varies in intensity.

The designated or published value of an artifact, attribute or
parameter. It may also sometimes refer to the distribution mode
value of an artifact, attribute or parameter.

See Linearity.

The potential difference that exists between pairs of power (or
signal) conductors.

A non-zero output of a device for a zero input.

The environmental conditions, such as pressure, temperature and
humidity ranges that the measuring device is rated to operate.

The systematic error due to the perception or influence of a human
operator or other agency.

See Readout Device.

A characteristic of a device, process or function. See also
Equipment Parameter.

A systematic deviation of a parameter’s nominal or indicated value
from its true value.

The total set of possible values for a random variable.

The expectation value of a random variable described by a
probability distribution.

The number of places past the decimal point in which the value of
a quantity can be expressed. Although higher precision does not
necessarily mean higher accuracy, the lack of precision in a
measurement is a source of measurement error.

The likelihood of the occurrence of a specific event or value from
a population of events or values.

A mathematical function that describes the relative frequency of
occurrence of the values of a random variable.

The sub-division of the range of a reading into a finite number of
steps, not necessary equal, each of which is assigned a value.
Particularly applicable to analog to digital and digital to analog
conversion processes.

Error due to the granularity of resolution in quantizing a sampled
signal. Contained within +/- 1/2 LSB (least significant bit) limits.

See Repeatability.
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Range

Rated Output (RO)

Readout Device

Reference Standard

Reliability Model

Repeatability

Reproducibility

Resolution
Resolution Error

Response Time

Sample

Sample Histogram

Sample Mean
Sample Size

Sensitivity

Sensitivity Coefficient

Sensor

An interval of values for which specified tolerances apply. Ina
calibration or test procedure, a setting or designation for the
measurement of a set of specific points.

See Full Scale Output.

A device that converts a signal to a series of numbers on a digital
display, the position of a pointer on a meter scale, tracing on
recorder paper or graphic display on a screen.

An artifact used as a measurement reference whose value and
uncertainty have been determined by calibration and documented.

A mathematical function relating the in-tolerance probability of
one or more MTE attributes or parameters and the time between
calibration. Used to project uncertainty growth over time.

The error that manifests itself in the variation of the results of
successive measurements of a quantity carried out under the same
measurement conditions and procedure during a measurement
session. Often referred to as Random Error.

The closeness of the agreement between the results of
measurements of the value of a quantity carried out under different
measurement conditions. The different conditions may include:
principle of measurement, method of measurement, observer,
measuring instrument(s), reference standard, location, conditions
of use, time.

The smallest discernible value indicated by a measuring device.
The error due to the finiteness of the precision of a measurement.

The time required for a sensor output to change from its previous
state to a final settled value.

A collection of values drawn from a population from which
inferences about the population are made.

A bar chart showing the relative frequency of occurrence of
sampled values.

The arithmetic average of sampled values.
The number of values that comprise a sample.

The ratio between a change in the electrical output signal to a
small change in the physical input of a sensor or transducer. The
derivative of the transfer function with respect to the physical
input.

A coefficient that weights the contribution of an error source to a
combined error.

Any of various devices designed to detect, measure or record
physical phenomena.
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Settling Time

Signal Conditioner

Skewness

Span

Specification

Stability

Standard Deviation

Standard Uncertainty

Static Performance
Characteristic

Statistical Independence

Stress Response Error

Student’s t-statistic

Subject Parameter

Symmetric Distribution

System Equation

System Module

System Output Uncertainty

The time interval between the application of an input and the time
when the output is within an acceptable band of the final steady-
state value.

A device that provides amplification, filtering, impedance
transformation, linearization, analog to digital conversion, digital
to analog conversion, excitation or other signal modification.

A measure of the asymmetry of a probability distribution. A
symmetric distribution has zero skewness.

See Dynamic Range.

A numerical value or range of values that bound the performance
of an MTE parameter or attribute.

The ability of a measuring device to give constant output for a
constant input over a period of time.

The square root of the variance of a sample or population of
values. A quantity that represents the spread of values about a
mean value. In statistics, the second moment of a distribution.

The standard deviation of an error distribution.

An indication of how the measuring equipment or device responds
to a steady-state input at one particular time.

A property of two or more random variables such that their joint
probability density function is the product of their individual
probability density functions. Two error sources are statistically
independent if one does not exert an influence on the other or if
both are not consistently influenced by a common agency.

The error or bias in a parameter value induced by response to
applied stress.

Typically expressed as t,,, it denotes the value for which the
distribution function for a t-distribution with v degrees of freedom
is equal to 1 — a.. A multiplier used to express an error limit or
expanded uncertainty as a multiple of the standard uncertainty.

An attribute or quantity whose value we seek to obtain from a
measurement or set of measurements.

A probability distribution of random variables that are equally
likely to be found above or below a mean value.

A mathematical expression that defines the value of a quantity in
terms of its constituent variables or components.

An intermediate stage of a system that transforms an input quantity
into an output quantity according to a module output equation.

The total uncertainty in the output of a measurement system.
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t Distribution

Temperature Coefficient

Temperature Effects

Thermal Drift

Thermal Sensitivity Shift

Thermal Transient Response

Thermal Zero Shift

Threshold

Time Constant

Tolerance Limits

Total Module Uncertainty
Total Uncertainty

Total System Uncertainty

Transducer

Transfer Function

Transient Response

Transverse Sensitivity

A symmetric, continuous distribution characterized by the degrees
of freedom parameter. Used to compute confidence limits for
normally distributed variables whose estimated standard deviation
is based on a finite degrees of freedom. Also referred to as the
Student’s t-distribution.

A quantitative measure of the effects of a variation in operating temperature on a
device's zero offset and sensitivity.

The effect of temperature on the sensitivity and zero output of a
measuring device.

The change in output of a measuring device per degree of
temperature change, given all other operating conditions are held
constant.

The variation in the sensitivity of a measuring device as a function
of temperature.

A change in the output from a measuring device generated by
temperature change.

The shift in the zero output of a measuring device due to change in
temperature.

The smallest change in the physical input that will result in a
measurable change in transducer output.

The time required to complete 63.2% of the total rise or decay after
a step change of input. It is derived from the exponential response
¢ where t is time and 7is the time constant.

Typically, engineering tolerances that define the maximum and
minimum values for a product to work correctly. These tolerances
bound a region that contains a certain proportion of the total
population with a specified probability or confidence.

See Module Output Uncertainty.

The standard deviation of the probability distribution of the total
combined error in the value of a quantity obtained by
measurement.

See System Output Uncertainty.

A device that converts an input signal from one form into an
output signal of another form.

A mathematical equation that shows the functional relationship
between the physical input signal and the electrical output signal.

The response of a measuring device to a step-change in the
physical input. See also Response Time and Time Constant.

An output caused by motion, which is not in the same axis that the
device is designed to measure. Defined in terms of output for
cross-axis input along the orthogonal axes.
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True Value

Type A Estimates

Type B Estimates

Uncertainty
Uncertainty Component

Uncertainty in the Mean
Value

Uncertainty Growth

Variance

Vibration Sensitivity

Warm-up Time

Within Sample Sigma
Zero Balance

Zero Drift

Zero Offset

Zero Shift

The value that would be obtained by a perfect measurement. True
values are by nature indeterminate.

Uncertainty estimates obtained by statistical analysis of a sample
of data.

Uncertainty estimates obtained by heuristic means in the absence
of a sample of data.

See Standard Uncertainty.
The uncertainty in an error component.

The standard deviation of the distribution of mean values obtained
from multiple sample sets for a given measured quantity.
Estimated by the standard deviation of a single sample set divided
by the square root of the sample size.

The increase in the uncertainty in the value or bias of an MTE
parameter or attribute over the time elapsed since measurement.

(1) Population: The expectation value for the square of the
difference between the value of a variable and the population
mean. (2) Sample: A measure of the spread of a sample equal to
the sum of the squared observed deviations from the sample mean
divided by the degrees of freedom for the sample. Also referred to
as the mean square error.

The maximum change in output, at any physical input value within
the specified range, when vibration levels of specified amplitude
and range of frequencies are applied to a transducer or other
measuring device along specified axes.

The time it takes a circuit to stabilize after the application of
power.

An indicator of the variation within samples.
See Offset.

See Zero Shift.

See Offset.

A change in the output of a measuring device, for a zero input,
over a specified period of time.
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APPENDIX B — PROBABILITY DISTRIBUTIONS

A probability distribution is a relationship between the value of a variable and its probability of
occurrence. Such distributions may be characterized by different degrees of spreading or may
even exhibit different shapes. Probability distributions are usually expressed as a mathematical
function f(¢) called the probability density function, or pdf.

Axiom 1 tells us that measurement errors are random variables that follow probability
distributions. For certain kinds of error, such as repeatability or random error, the validity of this
assertion is easily seen. Conversely, for other kinds of error, such as parameter bias and operator
bias, the validity of this assertion may not be so readily apparent.

It is important to bear in mind, however, that, while a particular error may have a systematic
value that persists from measurement to measurement, it nevertheless comes from some
distribution of like errors that possess a probability of occurrence. Consequently, whether a
particular error is random or systematic, it can be regarded as coming from a distribution of
errors that can be described statistically.

Once the probability distribution for a measurement error has been characterized, the uncertainty

in this error can be computed. The uncertainty for a given error source, ¢, is equal to the square
root of the distribution variance.

U, =./var(e) (B-1)

where

var(g) = T f(e) (e- /1)2 de (B-2)

—o0

For symmetric error distributions, the population mean g is taken to be zero. In these cases,
equation (B-2) reduces to

var(g) = Ojo f(e)elde (B-3)

—00

This appendix describes probability distributions that can be used to characterize measurement
errors. Once the probability distribution for a measurement error has been characterized, the
uncertainty in this error is computed as the square root of the distribution variance. Because the
Uniform distribution is often incorrectly selected as a simple means of obtaining an uncertainty
estimate, Section B.12 is included to discuss its proper application.

B.1 Normal Distribution

When obtaining a Type A uncertainty estimate, we compute a standard deviation from a sample
of values. For example, the uncertainty due to repeatability is estimated by computing the
standard deviation for a sample of repeated measurements of a given value. The sample standard
deviation is an estimate of the standard deviation for the population from which the sample was
drawn. Except in rare cases, we assume that this population follows the normal distribution.
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Figure B-1. Normal Distribution

Why do we assume a normal distribution? The primary reason is because this is the distribution
that either represents or approximates what we frequently see in the physical universe. It can be
derived from the laws of physics for such phenomena as the diffusion of gases and is applicable
to instrument parameters subject to random stresses of usage and handling. It is also often
applicable to equipment parameters emerging from manufacturing processes.

In addition, the normal distribution is often assumed applicable for a total error composed of
constituent errors. This assumption results from the central limit theorem, which demonstrates
that, even though the individual constituent errors may not be normally distributed, the combined
error is approximately so.

The probability density function for the normal distribution is given in equation (B-4). The
population mean is equal to zero and the variable o is the population standard deviation.

f(e)= g 207 (B-4)

\N2rwo

In applying the normal distribution, an uncertainty estimate is obtained from containment limits
and a containment probability.

For example, if + a represents the known containment limits and p represents the associated
containment probability, then an uncertainty estimate can be obtained from equation (B-5).

u =—°> (B-5)

&
1+
o P
2
The inverse normal distribution function, ®'(), can be found in statistics texts and in most

spreadsheet programs. If only a single containment limit is applicable, such as with single-sided
tolerance limits, the appropriate expression is given in equation (B-6).

Ug =——7< (B-6)



Note: The use of the normal distribution is appropriate in cases where the above
considerations apply and the limits and probability are at least approximately
known. The extent to which this knowledge is approximate determines the
degrees of freedom of the uncertainty estimate. The degrees of freedom and the
uncertainty estimate can be used in conjunction with the Student's t distribution to
compute confidence limits. The Student’s t distribution is discussed in Section
B.10.

B.2  Lognormal Distribution

The lognormal distribution can often be used to estimate the uncertainty in equipment parameter
bias in cases where the tolerance limits are asymmetric. This distribution is also used in cases
where a physical limit is present that lies close enough to the nominal or mode value to skew the
probability density function in such a way that the normal distribution is not applicable.

A typical right-handed lognormal distribution with physical limit ¢, mode M = 0 and two-sided,
asymmetric tolerance limits - @; and &, is shown in Figure B-2.

f(e)

-a, 8,

-q 0
Figure B-2. Right-handed Lognormal Distribution

The probability density function for the lognormal distribution is given in equation (B-7). The
variable ( is a physical limit for &, the variable m is the population median and the variable A is
the shape parameter. The quantities m, ¢ and A are obtained by numerical iteration, given
containment limits and an associated containment probability.

2
_ 1 £+ / 2
f = —|1 22 -
() NCrZIPE [n[mmﬂ (B-7)

The lognormal distribution statistics are defined in equations (B-8) through (B-11).

Mode: M=0 (B-8)
. 12
Median: m=gq|e” -1 (B-9)
2
Mean: u=m+qet’?-q (B-10)
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2 2
Variance: var(g) = o’ = (m+ q)2 % (e;t -1) (B-11)

The uncertainty is the square root of the variance.

2 2
u(,5=ym+q|e’1 /2\/e’7’ -1 (B-12)

B.3  Exponential Distribution

Sometimes cases are encountered where there exists a definable upper or lower physical limit to
errors along with a single-sided upper or lower tolerance limit. If the physical limit and the
mode value are equal, then the lognormal distribution suffers from a mathematical discontinuity
that makes it inappropriate as the distribution of choice. To handle such cases, the exponential
distribution is employed. A plot of a right-handed exponential distribution is shown in Figure
B-3 where the mode M =0 is less than the tolerance limit a.

f(¢)

&

0 a
Figure B-3. Right-handed Exponential Distribution

The probability density function for the exponential distribution is given in equation (B-13).
f (&)= e (B-13)

The absolute value for ¢1s used to accommodate cases where the tolerance limit a is less than
zero, as depicted in Figure B-4.

f(e)

&
a 0

Figure B-4. Left-Handed Exponential Distribution

150



Employing the probability density function for a right-handed exponential distribution, the
variance is

var(e) = | e~ (e- y)z de (B-14)
0
The distribution mean is computed to be

o0 o0
u=[reMede=A1[e Pede

0 0
Iy *© e~ e—O
=-A Ac+1 =-A| —(0o+1)——(0+1 (B-15)
)| ==t S-S 0e)
C 1 1
=—A0-—|=—
/12} A

Note: The mean value for a left-handed exponential distribution is u = —%.

Substituting equation (B-15) into equation (B-14), the variance of the right-handed distribution is
computed to be

© 2 0
var(e) = jie_lg (g—lj de=A1] e~ 4 (52 _2£+Ljd8
A 0 y)

0 22
o0 6]
=A[eHelde-2]e o st [e*de
0 0 Z
i 2 .-2e|” -Ae *© e "
s € +2je A2 ede |+ 2 (/18+1) _1e
4y Ao A 0 "
L (B-16)
_ 0 -Ae ® -Ae * A "
=-[2e ] | S (ae v ) | +2| S (e 41)| -]
L 0 22 22 A
0 0 0
_ —00 -0
N N ) —0}_1 e &
L Al A A

Note: The variance of a left-handed exponential distribution is equivalent to the
variance of a right-handed exponential distribution.
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The uncertainty estimate for the exponential distribution is obtained by taking the square root of
the variance.

(B-17)

B.4  Quadratic Distribution

The quadratic distribution, shown in Figure B-5, is continuous between minimum bounding
limits, does not exhibit unrealistic linear behavior and satisfies the need for a central tendency.

f(e)

&
-a 0 a

Figure B-5. Quadratic Distribution

For containment limits +L and associated containment probability p, the minimum bounding
limits +a are obtained from equation (B-18).

azi(l+2c0s[larccos(l—2p)D , L<a (B-18)
2p 3

The quadratic distribution is defined by the probability density function given in equation (B-19).
GOl
—|1-(e/a)" |, —a<e<a
f(g)=14a (e/2) (B-19)
0, otherwise

The quadratic distribution variance is

a a 4 3 5 8
VE‘r(f‘?)=i ) |:1—(6‘/a)2:|€2d6‘=ij 52—8—2 de=— 5——8—2
4a_a 4a_a a 4a| 3 53 2
_3 |2 2| 3’ [Ll}ﬁ[i_i} (B-20)
4a| 3 532 213 5 2 115 15
w2 al
215 5

The uncertainty is the square root of the variance.
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(B-21)

B.5  Cosine Distribution

While the quadratic distribution is continuous within minimum bounding limits, it is
discontinuous at the limits. And, even though the quadratic distribution has wider applicability
than either the triangular or uniform distribution, this feature nevertheless diminishes its physical
validity. As shown in Figure B-6, the cosine distribution overcomes this shortcoming, exhibits a
central tendency and can be determined from bounding limits.

f(e)

-a 0 a
Figure B-6. Cosine Distribution

Given containment limits £L and associated containment probability p, the minimum bounding
limits + a are computed by solving equation (B-22) using a numerical iterative method.

Bsin(zL/a)-ap+L=0, L<a (B-22)
T

The iterative algorithm is given in equations (B-23) through (B-25).

= sin(rL/a) -ap+ L (B2
T
. L B-25
Fi :—Sln(ﬂ'l_/ai_l)__Cos(ﬂ-l—/ai—l)_ p ( )
T a

where a; is the value obtained at the ith iteration.

The probability density function for the cosine distribution is given in equation (B-26).

i[l%rcos(;zg/a)], —a<e¢<a (B-26)

f(e)=

0, otherwise
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The cosine distribution variance is

a
Valr(g)—zL | [1+cos(7zg/a ]gzdg—L ) |:82 + & cos(ﬁg/a)}dg

_a 2a
_ , a
3 &2

1|e 2a° gcos 7r5/a a
=—|—+ 5 ;—sin (me/a)

b " (”) (B-27)
o 1]2a° .\ 2a° cos () . 28’ cos( )| 2a3  4a3
" 2al 3 2 2 “2al 3 2

The uncertainty is the square root of the variance.

u, =% /1—”—62 (B-28)

Note: The value of u, for the cosine distribution translates to roughly 63% of the
value obtained using the uniform distribution.

B.6  U-shaped Distribution

The U-shaped distribution shown in Figure B-7 applies to sinusoidal RF signals incident on a
load. Another application for this distribution would be environmental temperature control in a
laboratory or test chamber.

f(e)

&
-a 0 a

Figure B-7. U-Shaped Distribution

If containment limits =L and containment probability p are known, the minimum bounding limits
+ a can be computed from equation (B-29).
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L

=—— L< B-29
2 sin(7zp/2) 2 ( )

The probability density function for the U-shaped distribution is given in equation (B-30).

1
- —a<g¢<a
f(e)=4rva?-&? (B-30)

0, otherwise

The U-shaped distribution variance is

a 82

1
var(g) = — _ja —,—az —

de

1| 2 ]
-—|-£ 2—<92+a—sin_1(<9/a)
Tl 2 2
—a (B-31)
1| a2 . 1 a’ . 1
=—|—sin (1)——sin (-1
L& i (1)-Lsin ! (1)
_g'ﬁ(zj_i(_z) RIECS
| 2\ 2 2 2 | 2 2
The uncertainty is the square root of the variance.
a
U, =— (B-32)

V2

Note: The value of u, for the U-shaped distribution translates to roughly 122%
of the value obtained using the uniform distribution.

B.7  Uniform (Rectangular) Distribution

The uniform distribution has minimum bounding limits and an equal probability of obtaining a
value within these limits. There are two types of uniform distribution.

o The “round-off” uniform distribution

« The “truncation” uniform distribution

B.7.1 Round-off Uniform Distribution
The round-off uniform distribution describes errors that fall within symmetric minimum

bounding limits +a centered at zero, as shown in Figure B-8. The probability of lying between
the minimum bounding limits is constant and the probability of lying outside of them is zero.

The probability density function for the round-off uniform distribution is
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—, a<
f(¢)=1<2a (B-33)
0, otherwise

fe)

£
-a 0 a

Figure B-8. Round-off Uniform Distribution

The round-off uniform distribution variance is

a a
var(e) = | ngde L | e2de
) 2a
(B-34)
a 38 3 2
1% gL 12t &
a a3 a3 3
0
The uncertainty is computed by taking the square root of the variance.
a
U, = — B-35
:=f (B-35)

B.7.2 Truncation Uniform Distribution

The “truncation” uniform distribution describes errors that are distributed between the limits 0
and a, as shown in Figure B-9. The probability density function for the truncation uniform
distribution is given in equation (B-36).
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f(e)

£
0 a

Figure B-9. Truncation Uniform Distribution

1

—, 0<¢<a
f(e)=1a

0, otherwise

The truncation uniform distribution variance is computed to be

a a
var(g) = jégzdg =éj &2de

B.8  Triangular Distribution

(B-36)

(B-37)

(B-38)

The triangular distribution, shown in Figure B-10, is the simplest distribution possible for use in
cases where there are minimum containment limits and there is a central tendency for values of

the error.
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Figure B-10. Triangular Distribution

The triangular distribution sometimes applies to parameter values immediately following test or
calibration and to the sum of two uniformly distributed errors that have the same mean value and
minimum bounding limits.

Apart from representing post-test distributions under certain restricted conditions, the triangular
distribution has limited applicability. While it does not suffer from the constant probability
criterion of the uniform distribution, it nevertheless displays abrupt transitions at the bounding
limits and at the zero point, which are physically unrealistic in most instances.

The probability density function for the triangular distribution is given in equation (B-39).

(a+e)/a’, —a<e<0

f(e)={(a-¢)/a®, 0<e<a (B-39)

0, otherwise.

The triangular distribution variance is computed to be

10 2 1 @ 2
var(e)=— [ (a+¢e)e’de+—[(a-¢)e"de
[> Q—) a o
a a a
=a%j(a—5)52dg——j 82d5—i2j53d5
0 0 a o

(B-40)

The uncertainty is computed by taking the square root of the variance.
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2
u, = var(s) = \/% - % (B-41)

B.9  Trapezoidal Distribution

If two errors & and g, are uniformly distributed with bounding values of +a and tbh, where b> a,
then their sum

E=&t¢g

follows a trapezoidal distribution with discontinuities at +¢ = +(b — a) and +d = +(b + a), as
shown in Figure (B-11).

f(e)

-d 0 +d
Figure B-11. Trapezoidal Distribution

The probability of obtaining a value of ¢ is uniform between the limits tC, declining linearly to
zero at the minimum bounding limits +d.

When applying the trapezoidal distribution, it may be difficult to establish the minimum
bounding limits +d. One approach would be to specify tolerance limits +L, with an associate in-
tolerance probability p, and uniform probability limits =C. This information could then be used
to solve for d. If this approach is used, there are two possible cases.

Case 1:

If L <c, then the in-tolerance probability is

— (B-42)
d +c
and
d = & —-C (B-43)
p
Case 2:

If ¢ <L <d, then the in-tolerance probability is
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(d-L)°
d2 +c2

p=1-

and d is obtained by solving equation (B-45).

d =%{li\/(1— p)[l— p(C/L)Z}}

Note that, whenp=1,d = L.

The probability density function for the trapezoidal distribution is

dz_cz(d+5), —d<eg<—-c
! —c<eg<cC
f(e)= d+c’ -
1
dz_cz(d—g), c<e<d
0, otherwise

The trapezoidal distribution variance is

1 - 2 1 ¢ 5 1
—— [ (d+¢)ede+ [ efde+
d2_C2_d( ) d+C—C d2_C2C

2

var(e) =

d 2 ¢
:m({(d—é‘)g d8+d+c(j)8 de
2 40, 5 2 ¢
=—2j(d5 - )d8+ | e“de

c d+cy

- d c

2 de’ 84j| N 2 [83:l
= e

d* —c 3 4 . d+c| 3 0

dz_cz 3 4 3 4

= +
-2l 6 6 6 6

_ d* —4dc3 +3¢* + 4dc® - ac* _ d*-¢c*
6(d2—c2) 6(d2—02)
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The uncertainty is the square root of the variance.

(B-48)

B.10 Student’s t Distribution

If the underlying distribution is normal, and a Type A estimate and degrees of freedom are
available, confidence limits for measurement errors may be obtained using the Student's t
distribution.

f(e)

Figure B-12. Student's t Distribution

The probability density function for the Student's t distribution is given in equation
(B-49). The variable vis the degrees of freedom and the parameter I'(") is the gamma function.

f(£)= @[1 + %}_[V?j (B-49)
Jor ()

The degrees of freedom quantifies the amount of knowledge used in estimating uncertainty. For
Type A estimates the degrees of freedom is simply the sample size, n, minus one, as shown in
equation (B-50).

y=n-1 (B-50)

The knowledge used in estimating uncertainty is incomplete if containment limits + a for the
Student's t distribution are approximate and the containment probability p is estimated from
recollected experience (i.e., Type B). Therefore, the degrees of freedom associated with a Type
B estimate is not infinite.

If the degrees of freedom are finite but unknown, the uncertainty estimate cannot be rigorously
used to develop confidence limits, perform statistical tests or make decisions. This limitation has
often precluded the use of Type B estimates as statistical quantities and has led to the misguided
practice of using fixed coverage factors.
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Fortunately, the GUM provides an expression for obtaining the approximate degrees of freedom
for Type B estimates. However, the expression involves the use of the variance in the
uncertainty estimate, and a method for obtaining this variance has been lacking until recently.”

The procedure is to first estimate the uncertainty for the normal distribution and then estimate the
degrees of freedom from the following expression

2,2
ar(u
P (Us)) . 3oL (B-51)

2 v 207 (AL)? + za%e?” (Ap)’

where the variables AL and Ap represent "give or take" values for the containment limits and
containment probability, respectively, and

o= (”ij (B-52)

Once the degrees of freedom has been obtained, the Type B estimate can be combined with other
estimates and the degrees of freedom for the combined uncertainty can be determined using the

Welch-Satterthwaite formula. If the underlying distribution for the combined estimate is normal,
the Student’s t distribution can be used to develop confidence limits and perform statistical tests.

For confidence or containment limits +L and corresponding degrees of freedom, the uncertainty
can be estimated from

U, = L (B-53)

al2,v

where t,,, is the Student's t statistic, @ =1 - p, and p is the containment probability or
confidence level. The Student's t statistic for a given set of &/2 and v values can be obtained
from published tables.”"

B.11 The Utility Distribution

In some cases, one might expect the probability of finding a measurement error to be essentially
uniform over a range of values, tapering off gradually to zero at the distribution limits. The
utility distribution, shown in Figure B-13, represents this behavior. This distribution gets its
name because of its application to building utility functions in cost analysis applications.

" Type B degrees of freedom estimation is discussed in Appendix D.
' See for example, CRC Standard Mathematical Tables, 28" Edition, CRC Press Inc., 2000.
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f(e)

0 +d
Figure B-13. Utility Distribution

The utility distribution is very similar to the trapezoidal distribution, including the difficulty
establishing the limits +C and =d. As with the trapezoidal distribution, the approach is to specify
tolerance limits £L, with an associate in-tolerance probability p, and uniform probability limits.
This information could then be used to solve for d. There are two cases.

Case 1:
If L < c, then the in-tolerance probability is

p=—2~ (B-54)
d+c
and
d = EL c (B-55)
Y
Case 2:
If ¢ <L < d, then the in-tolerance probability is
p= {L+c+d_csin[ﬁ(L_C)} (B-56)
d+c T d-c
The probability density function for the utility distribution is
1
, lel<cC
d+c
fle) =l cos?| LE1ZOT | o ¢ 1< d (B-57)
d+c 2(d —c¢)
0, le > d

The utility distribution variance is
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var (&) = ! (j: eide +_IC cos? e+ 0 2d¢9+jcos =0 eide
c Zd 2(d —c) c 2(d -c)

¢ d _
__2 [£2de + | cos? i Ginl))} eide
d+c|p c 2(d —c¢)

(B-58)

Substituting the variable

into equation (B-58), the distribution variance becomes

. 2
L Ad-0) fz s2§[3(d—c)§+c} de
7r(d c) o Vs

VaI'( )

c

I

Co

{%} 4(d C) ”fz[iz(d —0)?¢? +ic(d _C)§+C2}cosz cde (B-59)
T

I +1 |
3(d+c)+ I

where |}, |, and |5 are defined in equations (B-60) through (B-62).

3z
16(0'—@ fzg cos? £d¢

Iy =
Vs (d +C) 0

33 /2
=163(d—c) §_+l§2 sin2§—lsin2§+l§cos2§
7(d+c)| 6 4 8 4
- 0 (B-60)
_lé(d —C)3 a2 1. T ]

3 —+—SmMmz——Smmx +—COS7T
d+c)| 48 16 8 8

_16d-o [ x| _2d-0 |7
d+c) |48 8] z*(d+c)
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2

3

_4d-o4 T2,
_—ﬂ(d+c)7rc(d C) (j) {cos”gdS
16c(d —c)®> #/2
S L2 d
72 (d +c) (I) ceosede
o l2
_ l6c(d —¢)? §_2+§sin24’+c052§ (B-61)
72 +c) | 4 4 8
_16C(d—C)2 _ﬁ zsinz cosm  cosO
~ 23(d +0) 16 8 8 8
_16e@d-0)’ [ 27 1 LB (2
z*d+c) |16 4] z*(d+o)
——4C2(d —©) ”j/zcosz Jd¢g
Coad+c)
_ac’(d-c) _£+sin2gr/2
z(d+c) [ 2 4 ] (B-62)
_4c’d-c) Kl sinﬂ_sinO}
C z(d+c) |4 4 4
_M_E}_m
- z(d+c) 4] d+c

Substituting equations (B-60) through (B-62) into equation (B-59), the utility distribution
variance is computed to be

var(e) =l + 1, + I3+

_2d-c)
72(d +¢)

2(d —c¢)’ (é =

2¢3
3(d +¢)

7], cd-0
6 72(d +¢)
12]+c(d —c)2 (1—

T

cz(d—c)+ 2¢3
d+c 3(d +c¢)

4j+c2d —lc3
3

(-4

(B-63)

7[2

2(d* -

d+c

3cd? +3c’d —c3) 1
6 7Z2 2

T

j+c(d2 —2cd +c2)(1—4]+czd —;c3

d+c

Rearranging equation (B-63),
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- 5 ; _
d?—cd2+c2d—C——%(d3—3cd2+3c2d—c3)
T
var(e) =
+C 2 o2 3 Ao o 3 50 ¢
+cd“ —2c“d +c¢ ——2(cd —-2c“d+c’)+c d—?
L 7 J

1 _d3 C3 2 3 2 2 3
= —+—-——(d” —cd“ -c“d+c -
d+c| 3 3 7[2( ) (B-64)

Td+c 3 .

1 |d+c? 2 —c)z(d +c)}
3 d3+c? 2 —c)2
3(d +¢) 2

The uncertainty is the square root of the variance.

3 d3+c? ~2d —c)2
3(d +¢) 2

(B-65)

Ug

B.12 Applying the Uniform Distribution

Unfortunately, the uniform distribution is often incorrectly selected for Type B estimates because
an uncertainty is simply computed by dividing containment limits by the square root of three.
Advocates of the adhoc use of the uniform distribution have asserted that this practice is
recommended in the GUM.

Basic selection criteria are provided herein, including specific cases where the uniform
distribution is applicable. The two common fallacies for universal or adhoc application of the
uniform distribution are also dispelled.

B.12.1 Criteria for Selecting the Uniform Distribution

The use of the uniform distribution is appropriate under a limited set of conditions. These
conditions are summarized by three criteria.

1. The minimum bounding limits must be known for the distribution. This is the
minimum limits criterion.

2. There must be a 100% probability of finding values between these limits. This is the
100% containment criterion.

3. There must be equal probability of obtaining values between the minimum bounding
limits. This is the equal probability criterion.

Minimum Limits Criterion
It is vital that the limits established for the uniform distribution are the minimum bounding
limits. For instance, if the limits +a bound the error distribution, then so do the limits +2a, £3a,
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and so on. Since the uncertainty estimate for the uniform distribution is obtained by dividing the
bounding limit by the square root of three, using a value for the limit that is not the minimum
bounding value will obviously result in an invalid uncertainty estimate.

This alone makes the application of the uniform distribution questionable in estimating bias
uncertainty from such quantities as tolerance limits. It may be that out-of-tolerances have never
been observed for a particular parameter (100% containment), but it is unknown whether the
tolerances are minimum bounding limits.

A difficulty often encountered when attempting to apply minimum bounding limits is that such
limits can rarely be established on physical grounds. This is especially true when using
tolerance limits for a given MTE parameter.

Some years ago, a study was conducted involving a voltage reference that showed that values for
one parameter were normally distributed with a standard deviation that was approximately 1/10
of the tolerance limit. With 10-sigma limits, it is unlikely that any out-of-tolerances would be
observed. However, if the uniform distribution were used to estimate the bias uncertainty for
this item, based on tolerance limits, the uncertainty estimate would be nearly six times larger
than would be appropriate. Some might claim that this is acceptable, since the estimate can be
considered a conservative one. That may be. However, it is also a unrealistic estimate.

100% Containment Criterion

By definition, the establishment of minimum bounding limits implies the establishment of 100%
containment. It should be said however, that an uncertainty estimate may still be obtained for the
uniform distribution if a containment probability less that 100% is applied. For instance,
suppose the containment limits are given as +L and the containment probability is stated as being
equal to some value p between zero and one. Then, if the uniform probability criterion is met,
the minimum bounding limits of the distribution are given by

a:L, L<a

If the equal probability criterion is not met, however, the uniform distribution would not be
applicable, and we should turn to other distributions.

Equal Probability Criterion

As discussed above, establishing minimum bounding limits can be a challenging prospect. It is
harder still to find real-world measurement error distributions that demonstrate an equal
probability of occurrence between two limits and zero probability of occurrence outside these
limits. Except in very limited instances, such as those discussed in Section B.12.2, assuming
equal probability is not physically realistic.

B.12.2 Cases where the Uniform Distribution is Applicable

Digital Resolution Uncertainty

We sometimes need to estimate the uncertainty due to the resolution of a digital readout. For
instance, a three-digit readout might indicate 12.015 V. If the device employs the standard
round-off practice, we know that the displayed number is derived from a sensed value that lies
between 12.0145 V and 12.0155 V. We also can assert to a very high degree of validity that the
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value has an equal probability of lying anywhere between these two numbers. In this case, the
use of the uniform distribution is appropriate, and the resolution uncertainty is

~0.0005V

u =0.00029 V.

Eres \/g
RF Phase Angle
RF power incident on a load may be delivered to the load with a phase angle &between -6 and
6. Unless there is a compelling reason to believe otherwise, the probability of occurrence
between these limits is equal (i.e., uniform). This yields a phase angle uncertainty estimate of

Uy =——=1.814.

N h

Note: Given the above, if we assume that the amplitude of the signal is
sinusoidal, the distribution for incident voltage is the U-shaped distribution.

Quantization Error

When an analog signal is digitized, the sampled signal points are quantized in multiples of a
discrete step size. The potential drop (or lack of a potential drop) sensed across each element of
an analog to digital converter (ADC) sensing network produces either a "1" or "0" to the
converter. This response constitutes a "bit" in the binary code that represents the sampled value.

Even if no errors were present in sampling and sensing the input signal, errors would still be
introduced by the discrete nature of the encoding process. Suppose, for example, that the full
scale signal level (dynamic range) of the ADC is Vi, volts. If n bits are used in the encoding

process, then the voltage can be resolved into 2N discrete steps, each of size V,/21.

The containment limit associated with each step is one-half the value of the magnitude of the
step. Consequently, the containment limits for quantization error are + Vin/2""'. The uncertainty
due to quantization error is obtained from these containment limits and from the assumption that
there is equal probability of occurrence between these limits.

B Vm /2n+1

ugquant - \/g

B.12.3 Incorrect Application of the Uniform Distribution

The indiscriminate use of the uniform distribution to obtain Type B uncertainty estimates is a
practice that has been gaining ground over the past few years. The two main reasons for this are

1. Ease of use.
2. Recommended in the GUM.

Ease of Use
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Applying the uniform distribution makes it easy to obtain an uncertainty estimate. If the
minimum bounding limits of the distribution are known, the uncertainty estimate, U, is simply
computed from dividing these limits by the square root of three.

It should be said that the "ease of use" advantage has been promoted by individuals who are
ignorant of methods of obtaining uncertainty estimates for more appropriate distributions and by
others who are simply looking for a quick solution.

In fairness to the latter group, they sometimes assert that the lack of specificity of information
required to use other distributions makes for crude uncertainty estimates anyway, so why not get
your crude estimate by intentionally using an inappropriate distribution?

Since the introduction of the GUM, methods have been developed to systematically and
rigorously apply distributions that are physically realistic.

Recommended in the GUM
It has been asserted by some that the use of the uniform distribution is recommended in the
GUM. In fact, most of the methodology of the GUM is based on the assumption that the

underlying error distribution is normal. For clarification on this issue, the reader is referred to
Section 4.3 of the GUM.

Another source of confusion is that some of the examples in the GUM apply the uniform
distribution in situations that appear to be incompatible with its use. It is reasonable to suppose
that much of this is due to the fact that rigorous Type B estimation methods and tools were not
available at the time the GUM was published, and the uniform distribution was an "easy out."

The philosophy of indiscriminately using the uniform distribution to compute Type B uncertainty
estimates undermines efforts to estimate uncertainties that can be used to perform statistical tests,
evaluate measurement decision risks, manage calibration intervals, develop meaningful
tolerances and compute viable confidence limits.
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APPENDIX C — STATISTICAL SAMPLE ANALYSIS

In the real world, it is seldom practical or economical to obtain all possible values of a
population. Instead, a data sample is drawn from a population of interest and sample statistics
are used to make inferences about the characteristics of the population. Three commonly used
data sampling formats (sampled values, sampled cells and sampled mean values) and their
relevant statistics are discussed herein.

In taking samples of measurement data, we collect the results of some number of repeat
measurements. For the sample statistics to be meaningful, we must ensure that each
measurement is both independent and representative. Measurements are independent if, in
measuring one value, we do not affect the measurement of another value. Measurements are
representative if they are typical of the kind of measurements we are interested in obtaining.
We must also ensure that the data are sampled randomly. In this regard, we strive to collect the
data “as it comes” without any screening that may skew the results.

When making repeat measurements, it is also important to include all sampled values, provided
they are independent and representative — not just the ones that appeal to us. However, this does
not mean that clearly anomalous values should be included. Methods for statistically identifying
outliers from samples of measurement data are presented in Section C.4.

The normal distribution is often assumed to be the underlying distribution for randomly sampled
data. However, this assumption may not apply to all measurement sampling scenarios. Section
C.5 discusses normality testing to determine if sampled data can be assumed to be normally
distributed.

A question that commonly arises when making repeat measurements is “what is considered to be
a sufficient sample size?”” Section C.6 addresses the effect of sample size on computed statistics
and presents a method that can be used to determine if the size of a sample of data is sufficient
for obtaining an estimated sample mean that differs from the true (population) mean by less than
or equal to some specified amount.

C.1  Sampled Values

In this format, sampled values consist of individual repeat measurements. The data can be
expressed as measured values or deviations from a nominal or specified value.

The sample mean, X, is obtained by taking the average of the sampled values. The average
value is computed by summing the sampled values and dividing them by the sample size, n.

1 |
Y:H(x1+x2+...+xn)=—_2 X; (C-1)

The sample standard deviation provides an estimate of how much the population is spread
about the mean value. The sample standard deviation, Sy, is computed by taking the square root
of the sum of the squares of sampled deviations from the mean divided by the sample size minus
one.

7 j.e., if they are obtained from the population of interest.
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Sy =\/#i(xi %) (C2)

n—-1iz

The value n-1 is the degrees of freedom for the estimate, which signifies the number of
independent pieces of information that go into computing the estimate. All other things being
equal, the greater the degrees of freedom, the closer the sample estimate will be to its population
counterpart. The degrees of freedom for an uncertainty estimate is useful for establishing
confidence limits and other decision variables.

The standard deviation in the mean value, sy, is equal to the standard deviation Sy divided by the
square root of the sample size.

(C-3)

C.1.1 Example 1 - AC Voltage Measurements

In this example, measurements are made to evaluate the repeatability of the AC voltage coming
out of a wall socket. We will compute the mean value and standard deviation for the voltage
data listed below.

Measurement | AC Voltage

1 115.5
2 116.0
3 116.5
4 114.3
5 115.3
6 117.1
7 115.2
8 116.2
9 115.2
10 115.5
11 116.0
12 115.8
13 115.5
14 116.5
15 117.2

The sample mean is computed to be

V=—
I5(+1152+115.5+116.0+115.8+115.5+116.5+117.2

17378 Ve
15

1 [115.5+116.0+116.5+ll4.3+115.3+117.1+115.2+116.2]
ac

~115.9 V,,
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and the differences between the measured values and the mean value are

VimV =1I33=115.9 =204 Ve Vo -V =1152-115.9=~0.7 V,,
V2oV =009 =01V Vig -V =115.5-115.9 = 0.4 V.
V37V =657 =06 Ve Vi -V =116.0-115.9 = 0.1V,
VamV =1a371139 =10 Ve Viy -V =115.8-115.9 = 0.1 V.
Vs 7V =137 =206 Ve Vi3 -V =115.5-115.9 = 0.4 V,,
Vo=V =719 =12 Vag Vi -V =116.5-115.9 = 0.6 V.
V1oV =229 =707 Ve Vis—V =117.2-1159 =13V,
Vg -V =116.2-115.9 = 0.3 V,,

The standard deviation is

11(=04)* +(0.1)* +(0.6)* + (=1.6)* +(=0.6)" + (1.2)* +(~0.7)* + (0.3)°

Sv = |7 Vatc

14| 4 (=0.7)* +(=0.4)* +(0.1)> + (~0.1)* +(=0.4)> +(0.6)* + (1.3)*

8.35
= 222 = Ve =077 Vg

and the standard deviation of the mean value is

0.77V,
Sy = ———=2 =020 V,,

J15

C.1.2 Example 2 — Temperature Measurements

In this example, a digital thermometer is calibrated in a temperature bath using a standard
platinum resistance thermometer (SPRT) as the temperature reference. The bath temperature is
set so that the SPRT reads 100.000 °C and the thermometer temperature is recorded. This
procedure is repeated several times. We will compute the mean and standard deviation of the
temperature data listed below.

Measurement SPRT °C Thermometer °C Deviation °C
1 100.000 100.02 0.02
2 100.000 100.03 0.03
3 100.000 99.98 -0.02
4 100.000 100.02 0.02
5 100.000 100.03 0.03
6 100.000 100.02 0.02
7 100.000 99.99 -0.01

The sample mean is computed to be
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T =100.00°C + %(0.02 +0.03-0.02+0.02+0.02+0.03-0.01)°C

0.09°C

=100.00°C + =100.00°C +0.01°C =100.01°C

and the differences between the measured values and the mean value are

T, —-T =100.02-100.01=0.01°C

T, =T =100.03-100.01=0.02 °C
T3-T =99.98-100.01=-0.03°C
T, —T =100.02-100.01=0.01°C
Ts—T =100.02-100.01=0.01°C

T¢ —T =100.03-100.01=0.02 °C
T; —T =99.99-100.01=-0.02 °C

The standard deviation is

s, = \/%[(0.01)2 +(0.02)% +(=0.03)" +(0.01)> +(0.01)* +(0.02)° + (—0.02)2} °C

= ,/0'0235 °C=0.02°C

and the standard deviation of the mean value is

~0.02°C

TR

=0.008 °C.

C.2  Sampled Cells

In this data sampling format, sample values consist of repeat measurements that have been
observed one or more times. The data are comprised of measured values or deviations from
nominal, along with the number of times that a value has been observed.

The sample mean, X, is obtained by taking the average of the sampled cell values. The average
value is computed by summing the sampled cell values and dividing them by the sample size, n.

1 k
X =—2 N (C-4)
Ni=1
where
ni = sample size or number of observations of a given sampled value, X;
k = number of sampled cells
and
k
n=3n. (C-5)
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The sample standard deviation, Sy, is computed by taking the square root of the sum of the
squares of sampled deviations from the mean divided by the sample size minus one.

Sx = \/L i ; (% —X)’ (C-6)

n—1is
The standard deviation in the mean value is computed as

Sx

= (C-7)

C.2.1 Example 1 - AC Voltage Measurements

In this example, we will use the same AC voltage measurement data used in C.1.1 arranged into
sample cells.

Sample AC Number

Cell Voltage Observed
1 115.5 3
2 116.0 2
3 116.5 2
4 114.3 1
5 115.3 1
6 117.1 1
7 115.2 2
8 116.2 1
9 115.8 1
10 117.2 1

The sample mean value is computed to be

V=—
15(+116.2+115.8+117.2

1737.8 Ve

1 (3><115.5+2><116.O+2><116.5+114.3+115.3+117.1+2><115.2jV
ac

~115.9 V,,

and the differences between the sampled cell values and the mean value are

Vi =V =1155-1159=-0.4 V,,
V, =V =116.0-115.9=0.1V,,
V3=V =116.5-115.9=0.6 V,,
V-V =1143-1159=-1.6 V,,
Vs -V =1153-115.9=-0.6 V,,
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Vg -V =117.1-1159=12V,,
V; =V =1152-115.9=-0.7 V,,
Vg -V =1162-115.9=0.3V,,
Vo -V =115.8-115.9 =-0.1 V,,

Vig -V =1172-1159=13V,,

The sample standard deviation is

1| 3%(=04)> +2x(0.1)° +2x(0.6)> +(~1.6)* +(~0.6)" + (1.2)°

Y =il1a 2 2 2 2 Vac
+2x(=0.7)" +(0.3)" +(-0.1)" +(1.3)
8.35
= 7 Vac = 077 Vac

and the standard deviation of the mean value is

0.77 V,
7 = ———=2 =020 V,_.

J15

C.3  Sampled Mean Values

In this format, the data sample consists of mean values obtained from sets of repeat
measurements. The data are comprised of mean values or mean deviations from nominal value,
along with the standard deviation and sample size for each set of repeat measurements.

For illustration, assume that our sample consists of k mean values and that the ith mean value, X,

and standard deviation of the ith sample, S;, have been computed via a spreadsheet or other
program using the following equations

1N
X =— 2 X (C-8)
Nj j=1
Sj = \/ Z (% — %) (C-9)
N; —11 =1
where
ni = the ith sample size
x. = mean value for the ith sample (i.e., ith mean value)
si = standard deviation of ith sample
Xij = the jth measurement of the ith sample

The overall mean value, X, (i.e., of all measurements) is computed from equation (C-10).
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o 1k 1k
X=—2 2 Xj=—2 N (C-10)
Ni=1 j=1 Ni=1
where
k = number of samples (i.e., number of mean values entered)
n = total number of measurements (i.e., cumulative of all sample sizes)

S
= an
i=1

The standard deviation of the sampled mean values relative to the overall mean value is the
between sample sigma , sp, computed from equation (C-11).

s —\/Li ni (X — X)? (C-11)
b — - i\A
n—1lijz

An indicator of the variation within samples is the within sample sigma, s,, computed from
equation (C-12).

Sy =JL§(ni ~1ys? (C-12)
e |

The standard deviation, S, of all X; values is computed from equation (C-13).

k n
5=\/LZ > (X = %)

n-1lizj=1
1 k _ 1 k

= [ X% +—— 2 (n - DS (C-13)
n—1lig n—1iz

=St +55,

The standard deviation for the mean of the sample mean values is computed by taking the
variance of X .

(C-14)

From equation (C-1),
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(C-15)

Since each X;j is sampled from a population with a variance equal to 0)% , then var(Xjj) = a)% and

equation (C-15) becomes

(C-16)
_ 1 % o2 = nlo-)% G)%
T2 = 2 =
ni- j=1 n; N
Substituting equation (C-16) into (C-14), gives
k 2 2
Var(7)=%z nios = nO;X =G—X=0'% (C-17)
n“i=1 n n

where oy is the standard deviation of the mean value population.

The population standard deviation oy is estimated with the sample standard deviation S computed
from equation (C-13). Similarly, the standard deviation of the mean of the mean values can be
estimated from equation (C-18).

S
= (C-18)

C.3.1 Example 1 — Pressure Measurements

In this example, tire pressure is measured with a gauge. The procedure consists of taking a small
sample of measurements and recording the average, standard deviation and sample size. This
procedure is repeated five times. The resulting pressure data are listed below.

Average Standard

Sample Pressure | Deviation Sample
Number | (Ibg/in%) (Ibg/in®) Size
1 31.7 0.6 3
2 323 0.8 5
3 32.0 1.0 3
4 30.5 1.3 4
5 32.7 0.6 3

The overall mean value is computed to be
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5:%(3><31.7+5><32.3+3><32.0+4><30.5+3><32.7) Ib; /in®

=%§'7lbf /in? =31.8Ib; /in?

and the difference between the sampled mean values and the overall mean are

P -P=31.7-31.8=-0.11b; /in?
P,—P=323-31.8=0.51b; /in
P,—P=32.0-31.8=021b;/in
P,-P=305-31.8=-131Ib;/in’

P,—P=327-318=0.91b; /in’

The standard deviation of the sampled mean values relative to the overall mean is

5 = \/%[3 x(=0.1)% +5x(0.5)% +3x(02)* +4x(-1.3)* +3x (0.9)2} Iby/in?

= ,/% Ibs/in® = 0.8 Ibs/in®.

The within sample sigma is computed to be

S :\/%[(3—1)><0.62 +(5-1)x0.87 + (3-1)x1.07 + (4=1)x1.3% +(3-1)x0.6 | Iby/in’

= /% Ibg/in* = 0.8 Ibg/in®.

The standard deviation is then computed to be

5=/(0.8)7 +(0.8)? Ibg/in? =128 Iby/in® = 1.13 Ibg/in2
and the standard deviation in the mean of the sample mean values is computed to be

_ 113 Ibg/in®

.
" V5

=0.51 Ibg/in>.

C.4  Outlier Testing

In the context of this document, an outlier is defined as a measured value that “appears” to be
inconsistent with other values observed within a data sample. Statistically speaking, an outlier
has a low probability of belonging to the same underlying distribution as other sampled values.
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As such, however, an apparent outlier may just be an observed value located near the tail of the
distribution.

Depending on the sample size, one or two outliers can significantly affect the calculated statistics
by falsely increasing the standard deviation (i.e., distribution spread) or introducing a bias in the
mean value. Consequently, the identification and possible exclusion of outliers from the
calculation of sample statistics may be warranted.

There are various test methods available for identifying statistical outliers from data samples.
Unfortunately, no single method or practice has gained universal acceptance. Similarly, no
consensus exists regarding the exclusion of outliers from subsequent data analysis.”

The criteria for defining and identifying outliers can often be subjective. Therefore, the decision
to exclude outliers from your sample statistics should be based on sufficient knowledge about the
measurement process. It is also a good practice to report all sample data, including potential
outliers and the method used to identify them.

C.4.1 Background

Most outlier tests are based on the evaluation of the relative deviation between the suspected
outlier and the sample mean. There are several outlier tests based on the assumption that the
sample data are normally distributed. These include Grubbs’ test, Dixon’s test, Rosner’s test and
Chauvenet’s criterion.

If the data are not believed to follow a normal distribution, then non-parametric (i.e., distribution
independent) tests can be applied. However, non-parametric outlier tests are not considered to be
as reliable as parametric tests and often require sample sizes of 100 or more.

Grubb’s test identifies one outlier at a time, thus requiring an iterative application. Dixon’s test,
Rosner’s test and Chauvenet’s criterion identify one or more outliers. Chauvenet’s criterion has
achieved relatively wide acceptance because it applies a simple, yet extremely effective non-
parametric technique to identify potential outliers.

C.4.2 Chauvenet’s Criterion”

Chauvenet’s criterion defines acceptable scatter around a mean value X for a given sample of n
readings and standard deviation S,. It specifies that all points should be retained that fall within a
band around the mean value that corresponds to a probability of 1 — 1/ 2n.

The normal distribution is used to determine the number of sample standard deviations that relate

to this probability. This “coverage factor” is obtained using the two-tailed inverse normal
function ®'()

L,=d"! (%j (C-19)

7 In fact, the FDA guidance “Investigating Out of Specification (OOS) Test Results for Pharmaceutical Production” indicates
that a chemical test result cannot be omitted with an outlier test, but a bioassy can be omitted. Content uniformity and dissolution
testing are specific areas that prohibit outlier removal.

™ Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for Engineers, 2™ Edition, Wiley Interscience
Publication, John Wiley & Sone, Inc., 1999, pp 34-37.

179



where
P,=1-1/2n.

Any points that lie outside X + L,;S,, are rejected.

C.5 Normality Testing

As previously discussed, the statistical analysis of samples is often based on the assumption that
the data follow the normal distribution. Therefore, it is often necessary to assess whether the
data are indeed normally distributed or a least approximately normally distributed. If the data are
not normally distributed, then the following questions should be asked

o Is the apparent non-normality a result of potential outliers?
e Can the data be normalized via a transform function (e.g., log transform)?

o Should the data be evaluated using non-parametric (i.e., distribution-free)
statistics?

C.5.1 Background

Both qualitative and quantitative methods can used to determine if the sampled data can be
assumed to be normally distributed. Qualitative or graphical methods include the use of
frequency histogram, normal probability and box-whisker plots. Quantitative or statistical
methods include tests for skewness and kurtosis, the chi-squared test, the Kolmogorov-Smirnov
test and the Shapiro-Wilk test, as well as variations of these tests.”

While graphical techniques provide a visual depiction of the data, their interpretation can be
highly subjective, especially when the sample size is small (i.e., n < 10). Statistical tests provide
more formal, objective methods for assessing whether the normal distribution provides an
adequate description of the observed data.

Statistical normality tests typically include the following basic procedure:

1. A test statistic is calculated from the observed data.

2. Assuming the normal distribution is indeed applicable, the probability of
obtaining the calculated test statistic is determined.

3. If the probability of obtaining the calculated test statistic is low (i.e., less than
0.05) then it is concluded that the normal distribution does not provide an
adequate representation of the observed data. Conversely, if the probability is
not low, then there is no evidence to reject the assumptions that the data are
normally distributed.

Note: The value set for the low probability is based on a user-defined confidence
level (i.e., 90%, 95% or 99%). It is also important to understand that the outcome
of a statistical test is highly dependent on the amount of data available. The larger

75 For example, see Bain, L. J. and Engelhardt, M.: Introduction to Probability and Mathematical Statistics, Duxbury Press,
1992.
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the sample size, the better the chances of rejecting (or accepting) the normal
distribution assumption.

The chi-squared and Shapiro-Wilk tests provide the best means of determining whether or not
the data are sampled from a normal distribution. The chi-squared method requires large data
samples (i.e., n > 50). An advantage of the Shapiro-Wilk test is that it can be used for smaller
sample sizes (20 < n < 50).

For samples of size 10 or more, statistical tests can also be performed to evaluate the skewness
and kurtosis of the sample in comparison to what is expected of samples from a normally
distributed population.

C.5.2 Skewness and Kurtosis Tests (n > 10)

Descriptive statistics, such as skewness and kurtosis, can provide relevant information about the
normality of the data sample. Skewness is a measure of how symmetric the data distribution is
about its mean. Kurtosis is a measure of the “peakedness” of the distribution.

If Xy, Xz, -+, X, are sampled values from a sample of size n with mean X and standard deviation s,
the sample coefficient of skewness ¢; and coefficient of kurtosis ¢4 are given by’®

j > (% -%)°
¢y = 2li=L (C-20)
S
and
LS -%
n-1; i=1
Cq = 7 (C-21)
S
where
S= \/_ 2 (X - X)
n —

The coefficient of skewness for a normal distribution is 0 (i.e., there is no deviation from
symmetry). The kurtosis of the normal distribution is 3. Consequently, if the skewness of the
data sample differs significantly from 0, then it exhibits an asymmetric distribution. Similarly, if
the kurtosis is significantly different from 3, then the distribution is either flatter or more peaked
than the normal distribution.

C.5.3 Chi-square (¥°) Test (n > 50)

The chi-squared goodness-of-fit test is based on the relative differences between observed
frequencies from a histogram plot of the data and the theoretical frequencies predicted by the
probability density function for the normal distribution.

76 NIST/SEMATECH, e-Handbook of Statistical Methods, www.ITL.NIST.gov/div898/handbook
/eda/section3/eda35b.htm.

181



C.5.4 Shapiro-Wilk Test (20 < n <50)

The Shapiro-Wilk test for normality consists of computing a W statistic based on the tabulated
coefficients, the sample standard deviation and sample size. A critical value W, is also obtained
from tabulated values for sample size n and significance level «, which is usually set equal to
0.10 or 0.05. The criteria for accepting or rejecting the normal distribution hypothesis is whether
ornotW>W,,.

C.6  Sample Size Evaluation

As previously stated, sample size can affect results of normality and outlier tests. In fact, some
test methods require a minimum sample size. More importantly, however, the size of a data
sample can affect the computed sample mean X , standard deviation Sy, and the standard

deviation in the mean Sy .

For example, consider the sample of AC voltage measurements given in Section C.1.1. If the
measurement process stopped after the first 5 voltage measurements were collected, then

v :%(115.5+116.0+116.5+114.3+115.3) Ve =115.5V,,

Vi =V =115.5-115.5=0.0 V,,
Vo =V =116.0-115.5=0.5 V.
V3=V =116.5-115.5=1.0 V,,
V=V =1143-1155=-12V,,
Vs-V =1153-115.5=-0.2 V,,

5, = \/%[(0.0)2 +(0.5) +(1.0)° +(-1.2)* + (—0.2)2} Vae = 0.83 Vye

and
083V,

J5

Comparison of the computed statistics obtained for the two sample sizes are shown below.

=0.37 V..

n= 5 15
V= 1155 1159
Sy= 083 | 0.77

s;= 037 0.0

In general, the sample size should be sufficient to achieve the goal of data sampling, which is to
make inferences about the population characteristics. Therefore, we must return to the question:
“how large does the sample size need to be?”
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A sample size evaluation method, based on the central limit theorem and probability theory, is
discussed in Section C.6.1. This method provides a straightforward approach to the assessment
of the minimum sample size required to achieve a specified maximum deviation between the
sample mean and the population mean.

C.6.1 Methodology”’

Let X1, Xo, -+, Xn represent repeat, independent unbiased measurements from a distribution with
mean x and standard deviation o. According to the law of large numbers,”® the sample average
X for these measurements converges to  in probability. Therefore, we can assume that is a
good estimate of x, if the sample size n is large.

The central limit theorem allows us to use the normal distribution to estimate the probability that
the magnitude of the difference between X and x is less than some maximum value C.

P(IX - ul<c)=P(-c <X - u<c) (C-22)

To estimate P, we first note that the expectation value of X is s, and the variance in X is o*/n.
Then the variable

X—u

0'/\/ﬁ

is normally distributed with population mean = 0 and population variance = 1. Accordingly, we
can write

P(—c<7—y<c)=P( C_ Xou ¢ j (C-23)

o/<n ) o/~n ) o/~n
RERE)
ZZCD(G/C\/HJ_I

where @ is the normal distribution function. Equating this probability to a confidence level £ for
the condition | X — & | < c, we have

¢ = -
ZCD(O_/\/HJ—I—,H (C-24)
and
c__gri[148 _
a/\/ﬁ_q) ( 5 j (C-25)

" Rice, J.: Mathematical Statistics and Data Analysis, Duxbury Press, Belmont, 1995, page 172.
78 The law of large numbers is a fundamental theorem of probability developed by Jacob Bernoulli circa 1713.
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where @' is the inverse normal distribution function. Rearranging equation (C-25), we have
Jn = (a/c)@'{#j (C-26)

In practice, we usually don’t know the value of o. Accordingly, we use the best available
estimate. In many cases, this is the sample standard deviation s. With this substitution, we have

Jn=(s/c)@! (#J (C-27)

C.6.2 Example 1 — Evaluation using a Sample Standard Deviation

In this example, we will use the measurement sample listed below to estimate the minimum
sample size needed to ensure that the sample mean will fall within 0.8 VAC of the population
mean with 95% confidence level.

Measurement = AC Voltage

1 115.5
2 116.0
3 116.5
4 114.3
5 115.3
6 117.1

The sample mean is computed to be

\7=%(115.5+116.0+116.5+ll4.3+115.3+117.1) Vac

6947 Ve | 1sgy
N ac

and the differences between the measured values and the mean value are

V; -V =115.5-1158=-0.3 V,,
V, -V =116.0-115.8=0.2 V,,
V3=V =116.5-115.8=0.7 V,,
V4 -V =1143-1158=~-1.5V,,
Vs -V =1153-115.8=-0.5V,,
Vg -V =117.1-115.8=1.3 V.

The standard deviation is
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s/ = A[ 03 + (02 + (077 + (1.5 + (-0 + (13| Ve

_ /—4'51 Vo = 0.98 V.

Applying equation (C-27), with ¢ = 0.8 V,. and = 0.95, we have

Jﬁ=(0.98/0.8)®'1(

1+0.95J

=1.23x D (0.975)
=1.23x1.96
=24

and n = (2.4)2 ~ 6. Therefore, given our initial criteria, the existing sample size should be

sufficient. However, if we had set ¢ = 0.6 V,. then

Jn = (0.98/0.6)(13'1(

1+0.95j
2

=1.63x D (0.975)
=1.63x1.96
=3.2

and n= (3.2)2 ~10. In this case, the existing sample size of 6 would not be sufficient.

C.6.3 Example 2 — Evaluation using a Population Standard Deviation

In this example, we will assume that a special temperature measurement test was conducted to
collect a large data sample (i.e., 50 or more observations) to characterize the population standard
deviation, . From analysis of the large data sample we obtained a value of o= 0.1 °F.

We will use this estimation for the population standard deviation to economize the collection of
future samples based on the following criteria

c=0.05°F and S=0.99.

Applying equation (C-26), we have

«/ﬁz(o.l/o.os)qu[

1+0.99j
2

=2x®1(0.995)
=2x2.576
=5.15
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and n = (5.15)" = 27.

However, if we lower our confidence level to = 0.95, then

«/ﬁz(O.I/0.0S)CD'l(

1+0.95j

=2x®1(0.975)
=2x1.96
=3.92

and n = (3.92)" =15.

Alternatively, we can use equation (C-24) to estimate the confidence level for the condition
|T — 1] <0.05°F, given o=0.1 and n = 10.

0.05
ﬂzzq)[o.l/«/ﬁj_l
=20 (1.58) -1
—2%0.943—1
— 0.886.

In this case, there is a 88.6% probability that the value of T obtained from 10 repeat
measurements would be within + 0.05 °F of the population mean, .
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APPENDIX D — ESTIMATING TYPE B DEGREES OF
FREEDOM

The amount of information used to estimate the uncertainty in a given error source is called the
degrees of freedom. The degrees of freedom is required, among other things, to employ an
uncertainty estimate in computing confidence limits commensurate with some desired
confidence level.

A Type A estimate is a standard deviation computed from a sample of data. In test or
calibration, the sample standard deviation represents the uncertainty due to random error or
repeatability accompanying a measurement. From the discussion in Appendix C, recall that the
degrees of freedom for this uncertainty is given by

v=n-1
where n is the sample size.

A Type B estimate is, by definition, an estimate obtained without recourse to a sample of data.
Accordingly, for a Type B estimate, we don’t have a sample size to work with. However, we can
develop something analogous to a sample size by applying the method described herein.

This methodology was originally developed in 1997 by Dr. Howard Castrup to provide a
rigorous approach for estimating Type B degrees of freedom. The method includes a formal
structure for extracting information from the measurement experience of scientific or technical
personnel. This information is used to calculate Type B uncertainty estimates and to approximate
the degrees of freedom of the estimate.

D.1  Methodology

The approach used to estimate the degrees of freedom for Type B estimates begins with the
relation proposed in the GUM.”

Ut (D-1)

palt
2 o [u(x)]

The method for computing the variance® in the uncertainty, o*[u(X)], is outlined in the following
steps:

1. We generalize the equation for the Type B uncertainty estimate as

L

__- D-2
o(p) (B-2)

Ug

where L in the containment limit, p is the containment probability, and ¢(p) is
defined as

” Equation G.3, Annex G of the GUM.

% In this document, the terms o°[] and () are equivalent to variance operator var().
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p(p) =@~ [(1+ p)/2] (D-3)
and the function @ H is the inverse normal distribution function.

2. The error in the uncertainty, Ug, due to errors in L and p is estimated using a first
order Taylor Series expansion.

oug oug
EUB =(Ij8|_ +(EJ8F’
:(&J_ngL+ Mg 109 (D-4)
oL oo )dp
_ea L dqp

@ (ozdp “p

where g_and &, are errors in L and p, respectively.

3. Assuming statistical independence between &_and &, the variance in Ug is
obtained using the variance addition rule.

2 2
o’ (Ug) = var(g, ) = ?Var(q) + %(%} var(z,,) (D-5)

By definition, the uncertainty of a quantity X is equal to the square root of the variance in the
error in X.
Uy = /var(ey)
Therefore, the variance in €. and g, can be expressed as
2 2
var(e ) = Ui and var(ep) = Uy.

Equation (D-5) can then be expressed as

2 2
o’ (ug) = —; —4(2—?} us. (D-6)

Dividing equation (D-6) by the square of equation (D-2), we get

2
o (Ug) _ u|_ d(!’j
-~ 87 +— u? D-7
2 e (dp b (D-7)
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The derivative in equation (D-7) is obtained from equation (D-3). We first establish that

Lo g2y, (D-8)

1+
2 \/
where (1)[] is the probability density function for the normal distribution.

We next take the derivative of both sides of this equation with respect to p to get

11 _p2pde

—=—e 22 D-9

2 \2r dp (D-9)
and, finally,

d_co:JZew/z, (D-10)

dp 2

Substituting equation (D-10) into equation (D-7) gives

2 2
o"(Ug) Ui 1 7 g0
Ué L2 (02 2 p

which, with the aid of equation (D-1), yields
5 -1
ve =l[‘i—L+L1e¢2u%} . (D-11)

D.2  Analysis Formats

In applying equation (D-11), we are confronted with the problem of obtaining u_ and up. These
quantities can be estimated using any of the four formats described in the following subsections.

D.2.1 Format 1: % of Values

This format reads "Approximately C% (£Ac%) of observed values have been found to lie within
the limits £L (£AL)."

In this format, a technical expert is asked to provide the error limits £AL and + Ac%. These
limits are used to estimate Ua and U,. The containment probability is

p=C/100
where C is the percentage of values of y observed within £L.
If we assume that the errors in the estimates of L and p are approximately uniformly distributed

within £AL and +Ap = +Ac% / 100, respectively, then we can write
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(ALY

ui = 3 (D-12)
and

2 (ap)?

uj =-——-~- D-13

p=" 5 (D-13)

Use of the uniform distribution is appropriate here, since the ranges +AL and £Ap can be
considered analogous to "limits of resolution," for which the uniform distribution is applicable.
This obviates the need for estimating confidence levels for AL and Ap. Any lack of rigor
introduced by this tactic is felt as a third order effect and does not materially compromise the
rigor of our final result. Note, however, that the minimum limits criterion, described in
Appendix B, are still in effect.

Substituting equations (D-12) and (D-13) in equation (D-11) gives

2 2 2
o (38) _ (ALZ) +L2£ oo’ (AP (D-14)

Using equation (D-14) in equation (D-1) yields an estimate for the degrees of freedom, 14, for a
Type B uncertainty estimate.

2 -1
Vg ;l c (UB) = 3(p2L2 (D-15)
uz 202(AL)? + 7L2e?” (Ap)>

If AL and Ap are set equal to zero, then the Type B degrees of freedom becomes infinite.
Obviously, in most cases, it is not realistic to have infinite degrees of freedom for Type B
uncertainty estimates. Therefore, it behooves us to attempt to apply whatever means we have at
our disposal to obtain a sensible estimate for 5.

D.2.2 Format2: X outof N

This format reads "Approximately X out of N observed values have been found to lie within the
limits +L (£AL)."

In this format, the containment probability is expressed as p = X/ N, where N is the number of
observations of a value and X is the number of values observed to fall within L (= AL). The

variance in L is obtained the same as in Format 1. The variance in the containment probability p
can be obtained by taking advantage of the binomial character of p.

I-p)
u =% (D-16)

Substituting in equations (D-12) and (D-16) into equation (D-11) gives
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2 2
o (;IB) _ (ALz) +L2£e¢2 pa-p) (D-17)

Using equation (D-17) in equation (D-1) yields

Sl U 3L
267 (ug)  2¢7(AL)? + 3712 p(1=p)/N

(D-18)

D.2.3 Format 3: % of Cases

This format reads "Approximately C% of N observed values have been found to lie within the
limits +L (+AL)."

This format is a variation of Format 2 in which the containment probability is stated in terms of a
percentage C of the number of observations n, with p = C/ 100. The equation for estimating the
degrees of freedom is the same as for Format 2:

N 3p°L°
VB = 5 5 5 5 .
202 (AL)? +3712 p(1—p)/N

(D-19)

D.2.4 Format4: % Range

This format reads "Between C;% and C,% of observed values have been found to lie between
the limits £L (+AL)."

This format is a variation of Format 1 in which a range of values is given for the containment
probability, p = C/100, where C = (C; + C,) and £Ac = (C, - C)/2. The equation for estimating
the degrees of freedom is the same as for Format 1:

212
Vg = 3p7L

= . . (D-20)
207 (AL)? + z1%e? (Ap)?
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APPENDIX E — BAYESIAN ANALYSIS

Using Bayes theorem, methods were developed in the mid to late 1980s that enabled the analysis
of false accept risk for unit-under-test (UUT) parameters, the estimation of both UUT parameter
and measurement reference (MTE) biases, and the uncertainties in these biases. These methods
have been referred to as Bayesian risk analysis methods or, simply, Bayesian analysis methods.

In applying Bayesian analysis methods, we can refine estimates of the UUT and MTE attribute
biases and compute in-tolerance probabilities based on a priori knowledge and on measurement
results obtained during testing or calibration.

The fundamentals of the Bayesian method are presented in the following sections. Derivations
of the expressions used in this appendix are given in NASA Measurement Quality Assurance
Handbook ANNEX 4 — Estimation and Evaluation of Measurement Decision Risk.

Note: The Bayesian method described herein is applicable when parameter biases
are normally distributed.

E.1 Bayes Theorem

In the 18th century, Reverend Thomas Bayes expressed the probability of any event, E;, — given
that a related event, E,, has occurred — as a function of the probabilities of the two events
occurring independently and the probability of both events occurring together.

P(E |Ey) =Tl ) (E-1)
P(E;)
where the joint probability P(E;,E;) is defined as
P(E1, Ey) = P(Ey | EDP(E)) = P(E | Ex)P(Ey) (E-2)
So, the conditional probability P(E;|E;) can be expressed as
P(E, | Ey) = P(E; [EDP(ED (E-3)

P(E;)

Bayes' theorem proves to be of considerable value in computing measurement decision risks in
test and calibration. Its derivation is simple and straightforward.

E.1.1 Joint Probability

In measurement decision risk analysis, we are often interested in the probability of two events
occurring simultaneously. For example, we might want to know the probability that a UUT
attribute is both in-tolerance and perceived as being in-tolerance. If we represent the event of an
in-tolerance attribute as E; and the event of observing the attribute to be in-tolerance as E,, then
the joint probability for occurrence of E; and E; is written

P(E; and E;) = P(E;,Ey). (E-4)
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E.1.1.1  Statistical Independence

If the occurrence of event E; and the occurrence of event E; bear no relationship to one another,
they are called statistically independent. For example, E; may represent the outcome that an
individual selected at random from within a group of males is 30 years old and E; may represent
the event that his shoe size is 11.

It can be shown that, for statistically independent events,
P(E;,E) = P(E)P(Ey) (E-5)

Another important result derives from the probability that event E; will occur or event E; will
occur. The appropriate relation is

P(E; or Ey)=P(E)) +P(Ey) - P(E}, Ey) (E-6)

Substituting equation (E-5) into equation (E-6) gives the relation for cases where E; and E; are
independent.

P(E; or Ey)=P(E))+P(Ey) —P(E))P(Ey) (E-7)

E.1.1.2  Mutually Exclusive Events

On occasion, events are mutually exclusive. That is, they cannot occur together. A popular
example is the tossing of a coin. Either heads will occur or tails will occur. They obviously

cannot occur simultaneously. This means that P(E;,E;) =0, and

P(E; or E5)=P(E)) +P(E,) (E-8)
E.1.2 Conditional Probability
If the occurrence of E; is influenced by the occurrence of E;, we say that E; and E; are

conditionally related and that the probability of E; is conditional on event E;. Conditional
probabilities are written

P(E; given Ey) =P(E; | Ey) (E-9)
It can be shown that the joint probability for E; and E, can be expressed as

P(E,E») =P(E; | Ey)P(Ey) (E-10)
Equivalently, we can also write

P(Ey, Ey) = P(Ey | E))P(Ey) (E-11)

Note that, since P(E},E») = P(E»,E;), we have
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P(E; [E2)P(Ey) = P(E; | E))P(Ey) (E-12)
Rearranging equation (E-12), we have Bayes’ theorem given in equation (E-3).

_ P(E; [EDP(ED

P(E; |Ey) P(E,)

E.2 Risk Analysis for a Measured Variable

The procedure for applying Bayesian analysis methods to perform risk analysis for a measured
attribute or parameter is as follows:

1. Assemble all relevant a priori knowledge, such as the tolerance limits for the
UUT attribute, the tolerance limits for the MTE attribute, the in-tolerance
probabilities for each attribute and the uncertainty of the measurement process.

2. Perform a measurement or set of measurements. This may consist either of
measuring the UUT attribute with the MTE attribute, measuring the MTE
attribute with the UUT attribute or using both attributes to measure a common
artifact.

3. Estimate the UUT attribute and MTE attribute biases using Bayesian analysis
methods.

4. Compute uncertainties in the bias estimates.

Act on the results. Report the biases and bias uncertainties, along with in-
tolerance probabilities for the attributes, or adjust each attribute to correct the
estimated biases, as appropriate.

E.3 A priori Knowledge

The a priori knowledge for a Bayesian analysis may include several kinds of information. For
example, if the UUT attribute is the pressure of an automobile tire, such knowledge may include
a rigorous projection of the degradation of the tire's pressure as a function of time since the tire
was last inflated or a SWAG estimate based on the appearance of the tire's lateral bulge.
However a priori knowledge is obtained, it should lead to the following quantities:

» Estimates of the uncertainties in the biases of both the UUT attribute and MTE
attribute. These estimates may be obtained heuristically from containment limits
and containment probabilities or by other means, if applicable.

e An estimate of the uncertainty in the measurement process, accounting for all
eITor Sources.

E.4  Post-Test Knowledge

The post-test knowledge in a Bayesian analysis consists of the results of measurement. As stated
earlier, these results may be in the form of a measurement or a set of measurements. The
measurements may be the result of readings provided by the MTE attribute from measurements
of the UUT attribute, readings provided by the UUT attribute from measurements of the MTE
attribute, or readings provided by both the UUT attribute and MTE attribute, taken on a common
artifact.
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E.5 Bias Estimates

Initial UUT attribute and MTE attribute biases are estimated using the method described in
Chapter 8. The method encompasses cases where a measurement sample is taken by either the
UUT attribute, the MTE attribute or both. The variables are given in Table E-1.

Table E-1. Bayesian Estimation Variables

Variable Description
€uuTp the UUT attribute bias at the time of calibration
Uyut,b the UUT attribute bias standard uncertainty
) a measurement (estimate) of eyyr, obtained through
calibration.
EeMTE,b the MTE attribute bias at the time of calibration
UMTE b the MTE attribute bias standard uncertainty
Ucal the uncertainty in the UUT attribute calibration process, as
defined in Chapter 8.
-Lyand Ly | |the lower and upper UUT attribute tolerance limits
-ly and I, the lower and upper MTE attribute tolerance limits

E.5.1 Refinement of the UUT Bias Estimate

Employing the nomenclature listed in Table E-2 and the Bayes’ relation given in equation (E-3),
the conditional distribution of eyyrp given a value of ¢ is defined as

f(eyur,pl9)=

f(S1eyur,p) f(eyur p)
f(5)

where the probability density function for J is

f(o)= ] f(5,eyut p)deyut.p

—00

= [ f(5leyutp) feuuT,p)deyuT p-

—00

For normally distributed values of eyyrp and o,

and

T V27Uyyt

f(o]eyurp) = \/Z_T
cal

2 2
o~e0uTb 12UGuT p

1 e_(5_eUUT,b )2 /2Ugy
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Table E

-2. Risk Analysis Probability Density Functions

pdf

Description

f(euutp)

pdf for the UUT bias at the time of calibration

f(9)

pdf for the measurement result

(5, evutp)

pdf for the joint distribution of d and eyuryp

f(S| euutp)

pdf for the conditional distribution of 6 given a
value of eyurp

f(euutp | 0)

pdf for the conditional distribution of eyyrp
given a value of &

f(emtep | O)

pdf for the conditional distribution of emre

given a value of 0

Note: The pdf designations in Table E-2 are consistent with those used in NASA Measurement
Quality Assurance Handbook ANNEX 4 — Estimation and Evaluation of Measurement Decision
Risk.

Substituting equations (E-15) and (E-16) into equation (E-14) gives

1 o o 2 /512 ) 2
£(5) = [ e (6—eyutp)”/2Ucar | o =€0UT b/ 2UGUT b deyyr o
278Ucal YuuT b oo 7 (E-17)
2 /52 2 2
3 1 T e[—(5—eUUT,b) /2UcalJ+[—eUUT,b/2UUUT,bJ
S — UT,b
278Ucal Yut b oo
Evaluation of the exponential argument is provided in equation (E-18).
2 2 2 2
arg = [—(5 —€yur,p)” / 2Ucql } + [_eUUT,b /2uUUT,b:|
i 2 2
_ 1 (0 —eyutp) N €uuT b
B 2 2
2 L Ucal Ugur b
(1 1, 5 52 (E-18)
=52t utb 25 €t 5
|\ Ucal  Ugur,p Ucal Ucal
2 2 7
1| Ucal +Ugurp 2 ) o o
=75 22 Gurb ~ 2 &ury T
| UcalUuur b Ucal Ucal
Defining the combined uncertainty
2 2
Ua =+/Ucal +Ugut b (E-19)

equation (E-18) becomes
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2 2 2
1 Ua 2 Ugut b o
ag=-Sl 5 5 €ut.p — 2508yt | T
| YcalUuur b UA Ucal
B 2
2 2 2 2
_ 1 Ua Uyur b o Uoutb 2
S D7 VN PO T L1 R 5
212 2 UuT.b 2 2 2 2
UcalUyuT b Ua Ucal  UcalUa
B 2
2 2 2 2 2
_ 1 Ua UUUT,b§ 0° | Ua —Ugutp
T o2 2 Couth 5 = 2
UcalUyuT b Ua Ucal Ua
B 2
2 2 2
1 Un uUUT,b5 o
T o2 2 Couth 5 T
UcalUyuT b Ua Ua

Substituting the variables

U~q1U U
UUT,b
calYuuT.b and ,

Ua ux

into equation (E-20), the exponential argument can be written as

1 (eUUT,b_K5)2 52
arg = —— > +—

4 Ua

Finally, defining the variable
_ &t~ KO

v

¢

where de 7, =7d¢, equation (E-17) can be written
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52 o« 242
e A _ _
f (5) — J' e (eUUT,b k5) /27 deUUT b
27UcalUyut b —o0 ’

~SPI2uE o,
27UcalUyut b —o o
UcalUyut,b 5% /2u% (E-22)
-2 /2u3 ~82 /2u2 €
e " a7t __ Ua
27Ul Uyut V27UcaUyut b V27Uca Uyt
__ 1 g
Substituting equations (E-15), (E-16) and (E-22) into equation (E-13), yields
Up —[(5—%UT,b)2 / 2Uga) +&5uT b / 2UGUT p 5 /2Uﬂ
f(eUUT,b |10) = \/EU N €
cal “uuT ;b (E-23)
_ L Aeuurp-h)t2up
\/27Z'Uﬂ
where
U2 b
B=x5=—"20 (E-24)
UA
and
u u
ug _ _UUT bcal (E-25)
Ua

Given these results, along with the properties of the normal distribution, we see that s the
refined estimate for eyur) and Ugis the estimated bias uncertainty.

2

u
UUT Attribute Bias = f = 5> & (E-26)
Ua
and
u u
UUT Attribute Bias Uncertainty = Uz = “UUT bcal (E-27)
Ua

E.5.2 Refinement of the MTE Bias Estimate

With the Bayesian method, calibration results can be used to obtain an estimate of the bias of the
calibration MTE attribute and the uncertainty in this estimate. This is accomplished by
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imagining that the UUT is calibrating the MTE. We begin by replacing Uyut with Umtep and &
with —d'in equation (E-26).

2
UMTE,b S
2

UA

MTE Attribute Bias = o = — (E-28)

The first step in estimating the MTE attribute bias uncertainty is to define a new uncertainty

term.
= Ju? 2 E-29
Uprocess = 4/ Ucal ~UMTE b (E-29)

Next, a calibration uncertainty is defined that would apply if the UUT were calibrating the MTE.

' 2 2
Ucal = \/UUUT,b +Uprocess (E-30)
Using this quantity in equation (E-27) yields the MTE attribute bias uncertainty.

UMTE bUcal

MTE Attribute Bias Uncertainty = U, =
Ua

(E-31)

E.6 In-Tolerance Probabilities

The in-tolerance probabilities for the UUT and MTE attributes are estimated by integrating the
appropriate pdf over the corresponding upper and lower tolerance limits.

E.6.1 UUT Attribute In-Tolerance Probability

An estimate of the UUT attribute in-tolerance probability Pyur,in is obtained by integrating
f(eUUT,b | 5) from —L; to L,.

1 D ey’
UUT,in /—2ﬂuﬂ i €UUT b

(E-32)

=q{"1+ﬁj+q{"2_ﬁ]—1
i s

where fis given in equation (E-26).

E.6.2 MTE Attribute In-Tolerance Probability

Since we have the necessary expressions at hand, we can also estimate the in-tolerance
probability of the MTE attribute, Purein. This probability is obtained by integrating the pdf
f(Eyrep [0) from -l to I,
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L
f o~ (BuTE p =) /20

1
- “de
TE,in \/Eua 1, MTE,b
—® |1 +a L+ |2 - _1
Uy Uy

where ¢ is given in equation (E-28).

I:)M
(E-33)
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APPENDIX F - FORCE GAUGE ANALYSIS EXAMPLE

The purpose of this analysis is to estimate and report the uncertainty in the calibration result
obtained for an applied forced. The force measurement uncertainty is estimated using the
analysis procedure discussed in Chapter 5.

F.1 Measurement Process Overview

A Chatillon model DGGS-250G digital force gauge is calibrated using a weight set
manufactured by Rice Lake Bearing Inc. The force gauge has a full scale output of 250 g-force
or 8 oz-force (ozf) and a specified accuracy of + 0.15% FS + 1 LSC (least significant character or
count).®' The digital display resolution of the force gauge is specified as 0.005 oz-force.

When specifications are reported as + L; & L, they are typically combined in root sum square to

obtain the total specification limits, + L.
L=+ +13

However, when contacted for verification, Chatillon technical support personnel stated that the
accuracy specifications for their DGGS-250G digital force gage should be added. Therefore, the
total specification limits are computed to be

tL=+(L +|—2)
( ozfx +0 005 ozf)
J_r(O 012+0. OOS)ozf
.017 ozf.

Note: Given the inconsistencies in which equipment specifications are reported,
it is always a good practice to seek additional manufacturer clarification to ensure
their proper interpretation and application.

The force gauge is mounted on a calibration base and oriented in either the tension or
compression mode. The total applied force is obtained by attaching a combination of calibration
weights. In the tension mode, the calibration weights are hung from the measurement shaft of
the force gauge. In the compression mode, the calibration weights are placed on the
measurement shaft

The assigned mass of each calibration weight is corrected for local gravity and air buoyancy to
determine the apparent force.*

F=m xcf (F-1)
where

81 Chatillon DFGS Series Specification data sheet, SS-FM-3112-1101, November 2001, Ametek, Inc.
82 P, King: “Determining Force from Assigned Mass Values,” Wyle Interoffice Correspondence 5321-05-080, July 6, 2005.
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F = applied force, oz-force
m = applied mass, oz
cf = conversion factor, oz-force/oz

The primary purpose of the calibration is to obtain an estimate of the bias of the unit under test

(UUT) force gage. The calibration result is the difference between the average force gauge

reading and the applied force. This difference is denoted by the variable 6 and defined by
o=X-F (F-2)

where X is the average force gauge reading.

Calibration data® for the tension and compression modes are listed in Tables F-1 and F-2,
respectively.

Table F-1. Tension Mode Calibration Data

Force Gauge | Force Gauge | Force Gauge | Measured | Force Gauge
Applied | Applied Reading Reading Reading Difference | Specification
Mass Force Runl Run2 Average ) Limits
(0z) (ozf) (ozf) (ozf) (ozf) (ozf) (ozf)
0.0000 | 0.0000 0.000 0.000 0.000 0.0000 +0.017
1.6000 | 1.5974 1.595 1.600 1.598 0.0001 +0.017
3.2000 | 3.1948 3.195 3.195 3.195 0.0002 +0.017
4.8000 | 4.7922 4.790 4.795 4.793 0.0003 +0.017
6.4000 | 6.3897 6.385 6.380 6.388 -0.0022 +0.017
8.0000 | 7.9871 7.985 7.985 7.985 -0.0021 +0.017

Table F-2. Compression Mode Calibration Data

Force Gauge | Force Gauge | Force Gauge | Measured | Force Gauge

Applied | Applied Reading Reading Reading Difference | Specification
Mass Force Runl Run2 Average ) Limits

(0z) (ozf) (ozf) (ozf) (ozf) (ozf) (ozf)

0.0000 | 0.0000 0.000 0.000 0.000 0.0000 +0.017
1.6000 | 1.5974 1.595 1.595 1.595 -0.0024 +0.017
3.2000 | 3.1948 3.195 3.195 3.195 0.0002 +0.017
4.8000 | 4.7922 4.790 4.790 4.790 -0.0022 +0.017
6.4000 | 6.3897 6.385 6.385 6.385 -0.0047 +0.017
8.0000 | 7.9871 7.985 7.985 7.985 -0.0021 +0.017

If the value of & falls outside of the specified tolerance limits,** then the UUT bias is typically
deemed to be out-of-tolerance (OOT) or noncompliant.

However, errors in the calibration process can result in an incorrect OOT assessment (false-
reject) or incorrect in-tolerance assessment (false-accept). The relationship between the
calibration result, ¢, and the true UUT bias, eyurp, is generally expressed as

8 Wyle Laboratories Calibration Data Sheet Number M64118 11Aug08

8 Since the tolerance limits constitute the maximum permissible difference or deviation, they should be expressed in units that
are consistent with those measured during calibration.

202



5 = eUUT,b + gcal . (F'3)

The probability that the UUT bias is in-tolerance is based on the calibration result and its
associated uncertainty. Therefore, all relevant calibration error sources must be identified and
combined in a way that yields viable uncertainty estimates.

F.2  Uncertainty Analysis Procedure

The purpose of this analysis is to estimate and report the total uncertainty in ¢ for each force
applied during the calibration. The uncertainty in ¢'is determined by applying the variance
operator to equation (F-3) and taking the square root.

Uy =/var(J) = \/Var(eUUT,b + ‘9ca|)
= var (&)

The force gauge calibration error, &, is defined as

(F-4)

Ecal = EF T Eres T &g (F-5)
where
& = error in the applied force
&es = force gauge resolution error
&ep= repeatability or random error

Note: Operator bias is not considered relevant to this analysis.

As shown in equation (F-1), the applied force is a function of the applied mass and the
conversion factor. Consequently, the error in the applied force is defined as

EF = Cmém + Cef Ect (F-6)
where
&n = error in the value of the calibration weight(s)

&t = error in the gravitational and air buoyancy correction factor
Cm, Ccf sensitivity coefficients

Substituting equation (F-6) into (F-5), the calibration error equation can be expressed as
Ecal =Cmém t Cof &t + Epes T Erep - (F-7)

Brief descriptions of the applicable calibration error sources are provided in the following
subsections.

F.2.1 Calibration Weight (&)

A Chatillon model 0.10Z-1LB-F weight set is used to calibrate the force gauge. The mass
values and tolerance limits of the weight set are listed in Table F-3. The applied mass is
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obtained by using a combination of weights, m = m; + m, + m3. Therefore, the error in the total
applied mass is expressed as

En = Em, + Emy T Em, (F-8)

In this analysis, the errors contained within the mass tolerance limits are assumed to follow a
normal distribution. The tolerance limits are also assumed to represent 95%confidence limits.

Table F-3. Calibration Data for Weight Set*

Nominal Measured Deviation from Tolerance
Weight Weight Weight Nominal Limits*

1D (0z) (0z) (0z) (0z)

0.1 0.09999 -0.00001 + 0.00005

0.2 0.20003 0.00003 + 0.00006

0.3 0.3 0.30000 0.00000 + 0.00006

Va 0.5 0.50003 0.00003 +0.00010

1 1 1.00011 0.00011 +0.00019

2 2.00014 0.00014 +0.00039

4 4 4.00035 0.00035 +0.00081

8 8 8.00052 0.00052 +0.00159

16 16 16.00052 0.00052 +0.00247

F.2.2 Conversion Factor (&)

The factor for converting the applied mass to force is 0.9983830 oz-force/oz. The correction
factor accounts for local gravity and air buoyancy. The expanded uncertainty for the correction
factor is estimated to be + 6 ppm or £ 5.99 x 10 oz-force/oz. These tolerance limits represent a
coverage factor of k =2 and the associated error distribution is characterized by the normal
distribution.

F.2.3 Digital Resolution (&)

As previously stated, the digital display resolution of the Chatillon force gauge is specified as
0.005 oz-force. Therefore, the resolution error limits are + 0.0025 oz-force (i.e., * half the
resolution). These limits represent 100% containment limits for a uniformly distributed error
source.

F.2.4 Repeatability (&ep)

The calibration process for electronic force gauges like the Chatillon model DGGS unit does not
include steps for obtaining repeat measurements. A special test was conducted on a similar force
gage to assess the repeatability associated with the calibration equipment, laboratory
environmental conditions and other procedural steps. Ten repeat measurements were made at
four different applied force values. The resulting data are listed in Table F-4.

The data indicate that any variation in the force gauge readings is less than the display resolution.
Therefore, repeatability is not included as a source of uncertainty for this analysis.

8 Wyle Calibration Data Sheet M59578 11Jun08.
8 NIST Handbook 105-1, Specifications and Tolerances for Reference Standards and Field Standard Weights and Measures, 1.
Specifications and Tolerances for Field Standard Weights (NIST Class F).
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Table F-4. Repeatability Data for DFGS-2 Force Gage®’

Nominal Mass (1b) 0.0000| 0.4000| 1.2000| 2.0000
Nominal Force (Ibf) 0.0000| 0.3994 | 1.1981| 1.9968
Run 1 UUT Reading 0.000| 0.399| 1.198| 1.995
Run 2 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 3 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 4 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 5 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 6 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 7 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 8 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 9 UUT Reading 0.000| 0.399| 1.197| 1.995
Run 10 UUT Reading 0.000| 0.399| 1.197| 1.995
/Average UUT Reading 0.000| 0.399| 1.197| 1.995
Stand.ard Deviation of UUT 0000 0000 0.000 0.000
Reading

The revised error model for the force gauge calibration is given in equation (F-9).

Ecal = Cmém T Cef Ecf + Eres (F-9)
Applying the variance operator to equation (F-9) gives

var (&, ) = var (Cmgm +Cef Ecf + gres)
= Cr% var (& ) + Cgf var (gcf ) + var (&g ) + CyCef COV (gm »Ecf ) (F-10)

+ Cry €OV (& Eres ) + Cef COV (gcf ,gres)

where cov() terms account for the covariance between pairs of error sources. Covariance is a
statistical assessment of the mutual dependence of the errors. The covariances can have
inconvenient physical dimensions, so the correlation coefficient is often used instead. For

example, the correlation coefficient for &, and &y is defined as

_coV(&y, &t )

psmgcf - (F'll)

u. u

Em " écf

where U, and U, are the uncertainties in &, and &, respectively. Therefore, equation (F-
&m Ecf m cf

10) can be expressed as

87 Repeatability data for Chatillon Model DFGS-2 Digital Force Gage.
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var (e ) = G var (&p ) + g var (8Cf ) +Var (&es ) + CmCef Payeeg U Yegg

(F-12)
+ Cm P res Ysm Ysres ¥ Cof Pt sres Yscr Yeres
There are no correlations between error sources, so equation (F-12) can be simplified.
_ A2 2
var (&g ) = Cy var (&y, ) + Cgp var (gcf ) + var (& ) (F-13)

The variance terms in equation (F-13) are equivalent to the square of the uncertainty in the
corresponding error (e.g., var(g,)=U §m ). So, the uncertainty equation for o can be rewritten in

terms of the individual measurement process uncertainties and their associated sensitivity
coefficients.

(F-14)

2.2 2.2 2
Us = \/ cmu(Sm + Cf ugCf + u(9reS

The partial derivative equations used to compute the sensitivity coefficients are listed below.

_OF _

R
™ am

cf Cef _E_

The measurement process uncertainties are estimated from the specification limits, containment
probability (i.e., confidence level) and the inverse error distribution function.

The force gauge digital resolution uncertainty is estimated using + 0.0025 oz-force error limits,
the inverse uniform distribution function and a 1.00 containment probability (100% confidence
level).

U = 0.0025 oz-force _ 0.0025 oz-force
"~ V3 1.732

The uncertainty in the conversion coefficient is estimated using the expanded uncertainty limits,
the inverse normal distribution function, ®', and a 0.9545 containment probability (95.45%
confidence level).

=0.00144 oz-force.

5991076 %L 5.99%1076 %% onf
Uy = 0z _ _ 0Z —2.995x107° ==
®_1(1+0.9545j 2.000 0z

2

Note: The digital resolution and conversion factor uncertainties do not change
over the range of applied masses.

The uncertainty in the applied mass is based on the combined weight standards used and their
associated tolerance limits. The uncertainty for an applied mass of 1.6 0z is computed for
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illustration purposes. Three weight set masses are used: 1 0z, 0.5 oz and 0.1 oz. From Table F-
3, the total tolerance limits for the 1.6 oz applied mass are

+ Lm ==£(0.00005 + 0.00010 + 0.00019) oz =+ 0.00034 oz.

The uncertainty in the applied mass is estimated using the inverse normal distribution function
and a 0.95 containment probability (95% confidence level). The uncertainty due to the error in
the 1.6 oz applied mass is estimated to be

U - 0.00034 oz-force _ 0.00034 oz-force
" o (1+0.95j 1.9600
2

=0.000173 oz-force

The estimated uncertainties and sensitivity coefficients for each parameter are summarized in
Table F-5. The component uncertainties are the product of the standard uncertainty and the
sensitivity coefficient.

Table F-5. Estimated Uncertainties for Force Gauge Calibration at Applied Mass = 1.6 0z

Error + Error Conf. Standard Sensitivity Component

Source Limits Level Uncertainty Coefficient Uncertainty
&n +0.00034 oz 95 0.000173 oz 0.998383 ozf/oz | 0.000173 ozf
&t +5.99x10% 0zfloz | 95.45 | 2.995x10° ozfloz 1.6 0z 4.792x10°° ozf
Eres + 0.0025 ozf 100 0.00144 ozf 1 0.00144 ozf

The uncertainty in J'is computed by taking the root sum square of the component uncertainties.

2 6 2 2
Ug = \/(0.000173 ozf )* +(4.792x107° ozf )+ (0.00144 ozt )

= /2.1036x 1076 0zf2 = 0.00145 ozf

The pareto chart, shown in Figure F-1, indicates that the force gauge digital resolution is the
largest contributor to the combined uncertainty. The uncertainties due to the weight standards
and conversion factor provide much less contribution to the combined uncertainty.

Applied Mass, g, -

Conversion Factor, £ |

0 20 40 60 80 100

Percent Contribution to Force Gauge Uncertainty

Figure F-1. Pareto Chart for Force Gauge Calibration Uncertainty
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The Welch-Satterthwaite formula is used to compute the degrees of freedom for Us.

4 4

Us Us
— = F-15
Yus 4 4 s 4 4 4 ( )
(cmug ) (Ccf Ug s ) u, (Cmug ) (CCf Uscr ) Ue
m/ . 4 Cres m/ . 4 Fres
Vug Vug Vu o0 o0 o0
m cf Eres

The degrees of freedom for all of the process uncertainties are infinite, so the combined
uncertainty also has infinite degrees of freedom.

The uncertainty estimates for the tension mode and compression mode calibration data are listed
in Tables F-6 and F-7, respectively.

Table F-6. Uncertainty Estimates for Tension Mode Calibration Data

Force Gauge | Measured Standard Force Gauge
Applied | Applied Reading Difference | Uncertainty | Degrees | Specification
Mass Force Average ) Us of Limits
(oz) (ozf) (ozf) (ozf) (ozf) Freedom (ozf)
0.0000 | 0.0000 0.000 0.0000 0.00144 0 +0.017
1.6000 | 1.5974 1.598 0.0001 0.00145 0 +0.017
3.2000 | 3.1948 3.195 0.0002 0.00148 0 +0.017
4.8000 | 4.7922 4.793 0.0003 0.00153 0 +0.017
6.4000 | 6.3897 6.388 -0.0022 0.00160 0 +0.017
8.0000 | 7.9871 7.985 -0.0021 0.00167 0 +0.017

Table F-7. Uncertainty Estimates for Compression Mode Calibration Data

Force Gauge | Measured Standard Force Gauge

Applied | Applied Reading Difference | Uncertainty | Degrees Specification
Mass Force Average ) Us of Limits

(02) (ozf) (ozf) (ozf) (ozf) Freedom (ozf)

0.0000 | 0.0000 0.000 0.0000 0.00144 0 +0.017
1.6000 | 1.5974 1.595 -0.0024 0.00145 0 +0.017
3.2000 | 3.1948 3.195 0.0002 0.00148 0 +0.017
4.8000 | 4.7922 4.790 -0.0022 0.00153 0 +0.017
6.4000 | 6.3897 6.385 -0.0047 0.00160 0 +0.017
8.0000 | 7.9871 7.985 -0.0021 0.00167 0 +0.017

F.3  In-tolerance Probability

As previously discussed, the probability that the UUT bias is in-tolerance is based on the
calibration result and its associated uncertainty. The largest value of ¢'is -0.0047 oz-force with
an associated uncertainty of 0.00160 oz-force. This value is an estimate of the bias, eyurp, in the
force gauge reading for an applied force of 6.3897 oz-force at the time of calibration.

Figure 2 shows the gyur probability distribution for the population of Chatillon Model DGGS-
250G force gauges. The spread of the distribution is based on the manufacturer specified
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tolerance limits of +0.017 oz-force. The calibration result, & = —0.0047 ozf , is depicted along
with black bars showing 95% confidence limits computed from
5ita/2,VXU5 (F-16)

where t,,, is the t-statistic, & = p/2, p is the confidence level and v is the degrees of freedom
for Us. For a 95% confidence level, ty 5. = 1.9600 and the confidence limits are computed to
be

—0.0047 ozf £1.96 x0.00160 ozf or —0.0047 ozf £ 0.0031 ozf .

This means that, while the value of gyuryp 1s unknown, there is a 95% confidence level that it is
contained within the limits of —0.0047 ozf +0.0031 ozf .

f(3UUT,b)

-0.017 ozf +0.017 ozf

Lﬁ
EuuTh

- 0.0047 ozf

Figure F-2. Force Gauge Bias Distribution

The probability that syt falls outside of the manufacturer specification limits is basically zero.
So, the UUT can be considered to be in-tolerance over the calibrated force range.
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APPENDIX G — SPECTRUM ANALYZER ANALYSIS
EXAMPLE

The purpose of this analysis is to estimate and report the uncertainty in the minimum and
maximum values of the relative flatness error of a spectrum analyzer that is calibrated over a
frequency range of 50 MHz to 3.0 GHz.

G.1  Measurement Process Overview

The frequency response performance parameter of an Agilent E4440A Spectrum Analyzer is
calibrated using an Agilent 5701B Signal Generator, Agilent 438A Power Meter, Agilent
11667B Power Divider, and Agilent 8485A Power Sensor, as shown in Figure G-1.

Measurement BNC Cable
Reference HP E4440A
Ext Ref SYNTHESIZED 1onHz | SPECTRUM
HP 438A In ¥ SIGNAL GENERATOR ou | ANALYZER UUT
‘/ﬁ
POWER g RN
METER rl ] ] 1]

DO 0oo oo Doooooo_o
00 ooo OO0 C coooo
oo oeg £ ooooo

.

Ch.B

gooo

RF Output «#y RF Input

ADAPTERD :
i

POWER aia
SPLITTER /-1 1c

Type N Cable HP 11667B

BURIED
POWER
SENSOR

HP 8485A
Figure G-1. Spectrum Analyzer Calibration Setup

The maximum frequency response error for the unit under test (UUT) spectrum analyzer is
specified relative to the frequency response at 50 MHz. As shown in Table 1, the maximum
relative error varies for different frequency ranges. Agilent reports that these maximum relative
error limits correspond to a 10 dB input attenuation (i.e., - 10 dB) and 20 °C to 30 °C
environmental operating temperature range.

Table G-1. Frequency Response Specifications for Agilent E4440A™

Frequency Max. Error Relative to
Range 50 MHz Response
3 Hzto 3.0 GHz +0.38 dB
3.0 GHz to 6.6 GHZ" +1.50 dB
6.6 GHz to 13.2 GHz® +2.00 dB
13.2 GHz to 22.0 GHZ® +2.00 dB
22.0 GHz to 26.5 GHZ" +2.50 dB

8 Specifications Guide for PSA Series Spectrum Analyzers, Manufacturing Part Number E4440-90606, Printed in USA April
2009, Agilent Technologies, Inc.
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b. Preselector centering applied.

The frequency response of the UUT is essentially an amplitude flatness specification for a given
frequency range. The flatness error is defined as™

Ftlat = Auut — Ppmy (G-1)
where

Ajur = UUT amplitude measurement at calibration frequency

APMB = Power meter amplitude measurement at calibration frequency

The calibration procedure calls for a nominal power input of -10 dBm (0.1 mW) to be supplied to
the UUT.”® As shown in Figure G-1, this is achieved by splitting the signal generator power
output to the UUT and the power sensor/power meter. The flatness error is then computed at
selected frequencies within a range (e.g., 3 Hz to 3 GHz).

The power splitter is initially characterized using an Agilent 8482A as a reference power sensor,
as shown in Figure G-2. The reference power sensor is connected to Channel A of the power
meter and the Agilent 8485A sensor power is connected to Channel B.

X
[ SYNTHESIZED
SIGNAL GENERATOR g1 cable HP E4440A
Ext Ref ‘ omm) SPECTRUM
HP 438A In out] ANALYZER
oo ; .
POWER [ - J - -
METER — = ?
_— 92 992 59299900 00 = EEEEEE@
o (o] oo ooo 0 ooooo . ool
c - ?@'-;;1 A s 468 83 o BeRot o %
————————— e
ch. 8 RF Output REFERENCE
POWER [ |HP 8482A
SENSOR
P 116678
Type N Cable POWER
SPLITTER
BURIED
POWER
L SENSOR

HP 8485A
Figure G-2. Power Splitter Characterization Setup

The splitter tracking error is computed from equation (G-2).

spllt APMA APMB (G-2)

where

% Instrument Messages and Functional Tests for PSA Series Spectrum Analyzers and ESA Series Spectrum Analyzers,
Manufacturing Part Number E4440-90619, Printed in USA June 2008, Agilent Technologies, Inc.

% Need reference information for Agilent E4440A Spectrum Analyzer Performance Verification Tests Frequency Response.
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APMA = Power meter Channel A measurement

APMB = Power meter Channel B measurement

The flatness error equation is then modified to account for the splitter tracker error.

Oflat = Auut — APMB - 5split (G-3)
The relative flatness error at a given test or calibration frequency is defined as
Oflat,e = Oflat — O flatsgyy, (G-4)

where

O flatgyyyy, — flatness error at 50 MHz frequency

The minimum and maximum values of Syt are recorded for the calibration frequency range
and compared to the frequency response specification limits.”' If either value of & flat,y falls

outside of these limits, then the UUT is typically deemed to be out-of-tolerance (OOT) or
noncompliant. However, errors in the calibration process can result in an incorrect OOT
assessment (false-reject) or in-tolerance assessment (false-accept).

The relationship between the calibration result, ¢ flatyg » and the true UUT bias, eyutp, 1S

generally expressed as

Sflat,, = CUUT,b + Ecal (G-5)

where &4 1s the calibration error.

The probability that the UUT frequency response parameter is in-tolerance is based on the
calibration result and its associated uncertainty. Therefore, all relevant calibration error sources
must be identified and combined in a way that yields viable uncertainty estimates.

G.2  Uncertainty Analysis Procedure

The purpose of this analysis is to estimate and report the total uncertainty in the minimum and
maximum values of &g, observed for a calibration frequency range of 50 MHz to 3.0 GHz.

The calibration results are summarized in Table G-2.

Table G-2. Relative Flatness Error for 50 MHz to 3 GHz Range

Specification 5 . | Specification
5ﬂatre| leltS ﬂatrel leltS
(dB) (dB) (uW) (LW)
Minimum | 0.13 +0.38 3.04 +9.14

%! Since the tolerance limits constitute the maximum permissible deviation or difference, they should be expressed in units that
are consistent with those measured during calibration.
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- 8.38
+9.14
- 8.38

Maximum| 0.32 +0.38 7.65

a. Input Power = 0.1 mW

The uncertainty in o flat,, is determined by applying the variance operator to equation (G-5) and

taking the square root.

u5f|atre| - Var(é‘ﬂ""trel ) - \/V{dr(eUUT’b *+ Eeal )

(G-6)
Given the equipment and procedures used, the calibration error equation is
€eal = EuUT res T €5y + EPm T Epsy (G-7)
where
Eogplit — EPsy T Epsg T 2¢py (G-8)
€pM = EpM.b T EpM res (G-9)
and
auutres = UUT resolution error
&ps, = Channel A power sensor bias
gps, = Channel B power sensor bias
Epmp = Power meter bias
Epm.res — Power meter resolution error
Note: During the power splitter characterization, the two power sensors are
connected to different power meter channels. Consequently, the power meter
error contributes to the error in Jgpjj¢ via the Channel A power and Channel B
power measurements, as depicted in equation (G-8).
Substituting equations (G-8) and (G-9) into (G-7), the calibration error equation becomes
Ecal = EUUT,res T Eps, T+ 2psy T 3Epm b T 3EpM res (G-10)

Brief descriptions of the calibration process errors are provided in the following subsections.

G.2.1 UUT Resolution Error (guur res)

The Agilent E4440A Spectrum Analyzer has a digital display resolution of 0.01 dB or < 1% of
the input signal level.”” Therefore, the resolution error limits in dB units are + 0.005 dB (i.e., £

%2 Specifications Guide for PSA Series Spectrum Analyzers, Manufacturing Part Number E4440-90606, Printed in USA April
2009, Agilent Technologies, Inc.
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half the resolution). The resolution error limits in mW units are computed to be

1 0.1lmW

:+—X

100

=+0.0005mW = £0.5uW

These limits represent 100% containment limits for a uniformly distributed error.

G.2.2 Channel A Power Sensor Bias (gpSA )

During the power splitter characterization, the HP8482A power sensor is connected to the power
meter Channel A. The most recent calibration data sheet™ for this power sensor states an
expanded uncertainty of = 0.99 % of the sensed power for a frequency range of 50 MHz to 3
GHz. The expanded uncertainty limits are assumed to represent a coverage factor of k = 2.

G.2.3 Channel B Power Sensor Bias (&ps, )

The HP8485A power sensor is connected to the power meter Channel B for both the power
splitter characterization and the UUT frequency response calibration. The most recent
calibration data sheet’ for this power sensor states an expanded uncertainty of + 1.75 % of the
sensed power for a frequency range or 50 MHz to 3 GHz. The expanded uncertainty limits are
assumed to represent a coverage factor of k = 2.

G.2.4 Power Meter Error (&py pand &py res)

The Agilent 438 A power meter is a microprocessor controlled dual channel meter that is used in
conjunction with an Agilent 8480 series power sensor to measure power ranging from -70 to +44
dBm (100 pW to 25 W) for a frequency range of 100 kHz to 26.5 GHz .

The accuracy limits for the 438A power meter are specified to be £ 0.02 dB (single channel
mode). The accuracy limits in pW units are computed to be

(0.02/10)

:i(lO xO.lmW—O.lmW)

+(1.00462 x 0.1mW — 0.1mW)
+0.000462 mW = +0.462 uW

The accuracy limits are assumed to represent 95% confidence limits for a normally distributed
error.

The digital display resolution is specified to be 0.1% full scale. The resolution error limits for
the 0.01 to 0.1mW range are computed to be

0.1 0.1mW

=+ —x

1000 2
=+0.00005mW = +0.05uW

% Wyle Laboratories Calibration Data Sheet Number M78587-20May08, Model 8482A, Serial Number US37294071.
o4 Wyle Report of Test Number 7.54389.04, Model 8485A, Serial Number 2703 A05070, September 5, 2008.
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The resolution limits represent 100% containment limits for a uniformly distributed error.

Applying the variance operator to equation (G-10), gives

var (&g ) = Var(gUUT,res +&pg, +26ps, +3pyp + 3‘C"PM7res)
= Var(é‘UUT’res ) + Var(gPSA ) + 4var(5PSB ) +9 Var(gPM b ) +9 Var(a‘PM ’res)

+2cov (5UUT,res>5PsA )+ 4COV(8UUT,res’gPSB )+ 6C0V(‘9UUT,res’8PM,b) (G-11)

+6cov (gUUTJes, EPM.res ) +4cov (gpsA s Epsyy ) +6cov (gPSA » EpM ’b)
+ 6cov (5PSA s EPM .res ) +12cov (EPSB »EPM b ) +12cov (SPSB s EPM . res )

+ 1800V(8PM,b’gPM,res)

where the cov() terms account for the covariance between pairs of error sources. Covariance is a
statistical assessment of the mutual dependence of the errors. The covariance terms can have
inconvenient physical dimensions, so the correlation coefficient is often used instead. For

example, the correlation coefficient for &,yr s and ps, is defined as

cov (gUUT,res »Eps )

’OEUUT,resEPsA -

u
EUUT res  €PSp

where Ushur res and Ugpg, are the uncertainties in  &,yr res and &pg, , respectively. Therefore,

equation (G-11) can be expressed as

var (&g ) = var (EUUT,res ) + var (gPSA ) + 4 var (EPSB ) +9var (gPM b ) +9var (gPM ’res)
* 2'05UUT,res’5PSA uSUUT,res UEPSA + 4'05UUT,res »€PSg uEUUT,res UEPSB
+ 6p‘9UUT,reSa‘9PM b u5UUT,res ugPM b + 6p‘9UUT,reSa‘9PM res uSUUT,res ugPM Jres (G-12)
+ 4'05P5A »€pSp uEPsA ufPsB + 6p€PsA »€PM b ugPSA uEPM b

+6 u.. u +12 u. u
Peps +pm res Eps, - EPM res Pepsy oM .p Eps - EPM b

+12 u u +18 u u
pEPsBagpM,res €PSg €PM,res ngM,bagPM,res EPM.b “€PM,res

There are no correlations between error sources, so equation (G-12) can be simplified to

var (&g ) = var (gUUT,res ) + var (gPSA ) +4 Var<5PSB ) + 9 var (5PM b ) + 9 var (gPM ,res) (G-13)

The variance terms in equation (G-13) are equivalent to the square of the uncertainty in the

corresponding error (e.g., var(éps, ) = uﬁps ). So, the uncertainty equation for Jgt, can be
A
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rewritten in terms of the individual measurement process uncertainties and their associated
sensitivity coefficients.

US oty = 3 [var (&g )

= |u? +uZ  +4u® +ou? +9u?
EUUT res €pPsy €psg €PM b €PM res

(G-14)

The spectrum analyzer digital resolution uncertainty is estimated using the £ 0.5 pW error limits,
the inverse uniform distribution function and a 1.00 containment probability (100% confidence
level).

U _ 0.5 W _ 0.5 uW ~ 029 uW
EUUT ,res \/5 1.732

The Channel A power sensor bias uncertainty is estimated using the expanded uncertainty of =
0.99% of the sensed power, a sensed power of 0.1 mW and k = 2 coverage factor.

0.99
100 <0 1mW 600099 MW 0.99 W

€PSp 2 2

= 0.495uW

The Channel B power sensor bias uncertainty is estimated using the + 1.75% expanded
uncertainty, the sensed power = 0.1 mW and k = 2 coverage factor.

J;44§,X 0.1mW
2

7
100 _0.00175mW _ 1.75uW

2

u =
€psp

=0.875uW

The power meter bias uncertainty is estimated using the + 0.462 uW error limits, the inverse
normal distribution function and a 0.95 containment probability (95% confidence level).

o = DAGUW _04Q2uW _nc o
Eou @_I(Hogs) 1.9600

2

The power meter digital resolution uncertainty is estimated using the + 0.05 uW error limits, the
inverse uniform distribution function and a 1.00 containment probability (100% confidence
level).

_0.05uW  0.05uW
uSPM,res - \/g N 1.732

=0.029 uW

The estimated uncertainties and sensitivity coefficients for each error source are summarized in
Table G-3. The component uncertainties are the product of the standard uncertainty and the
sensitivity coefficient.
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Table G-3.

Estimated Uncertainties for Agilent E4440A Frequency Response Calibration

Error + Error Conf. Standard Deg. Sensitivity Component
Source Limits Level Uncertainty | Freedom | Coefficient Uncertainty
EUUT res + 0.5 uW 100 0.29 uW 0 1 0.29 uW

€ps, +0.99 uW 95.45 0.495 uW 0 1 0.495 uW

€psy +1.75 uW 95.45 0.875 uW 0 2 1.75 uW
€pM b +0.462 pW 95 0.236 pW o0 3 0.708 pW
EpM . res +0.05 W 100 0.029 uW o0 3 0.087 uW

The uncertainty in O’y Ay 1s computed by taking the root sum square of the component

uncertainties.

Us iy = \/(0.29 UW ) + (0.495uW ) + (1.75uW)* +(0.708 uW)* +(0.087 uW)’?

=/0.084 +0.245 + 3.063 + 0.501 + 0.0076 uW

=/3.900 pW

=1.975uW

The pareto chart, shown in Figure G-3, indicates that the Channel B power sensor bias
uncertainty is the largest contributor to the uncertainty in the UUT relative flatness error.

Channel B Power Sensor Bias, &pg
Power Meter Bias, €pm b
Channel A Power Sensor Bias,é‘pSA

Spectrum Analyzer Resolution,&yur res

Power Meter Resolution, pp; res

"y

(=

10 20 30 40 50 60

Percent Contribution to Us
rel

Figure G-3. Pareto Chart for UUT Frequency Response Calibration

The Welch-Satterthwaite formula given in equation (G-15) is used to compute the degrees of
freedom for us, r The degrees of freedom for all of the process uncertainties are infinite, so
re

the uncertainty in the relative flatness error also has infinite degrees of freedom.
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4

Us fl
atpe|
V = G-15
u5ﬂatre| 4 4 4 4 4 ( )
u ) u 2u 3u (3U
EUUT, res N EPSp N ¢psSp N EPM,b N EPM,, res
o0 o0 o0 o0 o0

The uncertainties for the minimum and maximum values of U far., aT€ summarized in Table
rel

G-4.

Table G-4. Estimated Uncertainties for Relative Flatness Error (50 MHz to 3 GHz)

Specification
u p
Oflaty | Oflaty S latrey Limits
@) | @W) (W) (W)
Minimum | 0.13 3.04 1.975 +9.14
: : : - 8.38
Maximum | 0.32 7.65 1.975 o

G.3 In-tolerance Probability

As previously discussed, the probability that the bias in the UUT frequency response parameter,
&uuTp, 18 In-tolerance is based on the calibration result and its associated uncertainty. The
maximum relative flatness error was determined to be 7.65 uW. This value is an estimate of
€uuT.p, at the time of calibration.

Figure G-4 shows the probability distribution for eyyrp. The spread of the distribution is based
on the specified tolerance limits of +9.144 uW and — 8.378 uW for Agilent E4440A Spectrum
Analyzers.

f(gUUT,b)
- 8.38 uW +9.14 uyW
S flat,,,
4/
@ SUUTb
0 7.65 uW

Figure G-4. Bias Distribution for UUT Frequency Response

Given the maximum value of Oy Aty observed during calibration, it appears that the UUT
frequency response parameter is in-tolerance. However, because of the uncertainty in o flaty »

the actual bias in the UUT frequency response parameter, syutp, may be larger or smaller than
7.65 pW.
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The confidence limits for gyurp can be expressed as

5ﬂatre| T ta/Z,v x u§f|atr (G-16)

el

where t,. , 1s the t-statistic, @ = p/2, p is the confidence level and vis the degrees of freedom
for us .
flatye|

For a 95% confidence level, ty 925 = 1.9600 and the confidence limits for eyyrp are computed to
be

7.65 uW £1.96x1.975 uW or 7.65 puW +3.87 uW .

This means that, while the value of gyutp is unknown, there is a 95% confidence that it is
contained within the limits of 7.65 uW + 3.87 uW .

Figure G-5 shows the probability distribution for gyyrp given the calibration result & flat e = 7.65

puW. The black bar depicts the £ 3.87 uW confidence limits. Given the relatively large
uncertainty in & flat, » the in-tolerance probability of gyurp appears to be significantly reduced.

f(egurl é}latrﬂ)

-838uW / +P.14 uW

Oflatyy

i 1 &uuTh
0 7.65uW

Figure G-5. OOT Probability of UUT Frequency Response

Bayesian analysis methods are employed to estimate the true value of gyuyrp and compute the in-
tolerance probability based on a priori knowledge and on measurement results obtained during
calibration.”

Prior to calibration, the uncertainty, u is estimated from the in-inverse probability

fuuTh’
distribution for gyurp, the specification limits and the associated a priori in-tolerance probability.
In this analysis, two underlying assumptions are employed:

% An in-depth coverage of the methods and principles used to compute in-tolerance probability are provided in NASA
Measurement Quality Assurance Handbook, Annex 4 — Estimation and Evaluation of Measurement Decision Risk.
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1. &yutp is assumed to be normally distributed.

2. The asymmetric tolerance limits +L; and — L, are a prior 95% confidence limits.

Since L; # L,, the value of u 1s computed by solving equation (G-17) through numerical

SUUT b

Pa(in)=CD[ L }Lq{ L Jl (G-17)
U5UUT,b u€UUT,b

where P4(in) is the a priori in-tolerance probability of 95% and @ is the normal distribution
function.

iteration.

A value of u Ut b 4.45 uW was computed off-line using an uncertainty analysis software

program. This bias uncertainty estimate is equivalent to the standard deviation of the probability
distribution for the population shown in Figure G-4.

After calibration, the values of u, , Oflat.., and Ug are used to estimate the true value of
UUT b rel flatrg)
&uutp- This value is denoted £ and computed from equation (G-18).
u‘gUUT b
IB = 2 ’2 X §f|atrel (G-18)

UUTH  Oflatye

The Bayesian estimate, 5, will be less than or equal to the calibration result, Sy, - For

example, if the values of u and Ug flaty 27 equal, then S =5y, /2. Conversely if

€UUT b

US et 1s much smaller than u then S = Jy,, - From equation (G-18), the estimated true
re rel

fUUT b’
value of gyurp is computed to be

_ (4.45 uW)?
(4.45 uW)? + (1.975 uW)?
_ 19.80 pW?
23.70 pW?

x7.65 uW

% 7.65 uUW = 0.835 x 7.65 uW= 6.39 uW.

This minor reduction in the UUT bias estimate reflects the fact that the calibration uncertainty is
much smaller than the UUT bias uncertainty that is expected from the manufacturer specification
limits. Therefore, the observed 7.65 uW deviation is considered to be mainly attributable to the
UUT parameter bias.

The uncertainty in the Bayesian estimate £ is computed from equation (G-19).
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ug
Uﬂ = > VUt ’b2 X Ué‘ﬂatrel (G-19)
\/U + U

SUUTb  Oflatre)

The uncertainty in £is computed to be

4.45 uW
ﬂ =
\/(4.45 UW)? + (1.975 uW)?
_ 445u4W
4.87 uyW

u

x1.975 uW

x1.975 uW = 0.914 x 1.975 uW = 1.805 uW.

Finally, the post-calibration in-tolerance probability for gyurp is computed from equation (G-20).
pim=a| L8 Lol 28|, (G-20)
Up Up

The probability that the UUT frequency response (i.e., relative flatness error) is in-tolerance
during calibration is computed to be

P(in) = ® 8.38uW +639uW ) (9.14uW—-6.39uW)
1.805uW 1.805uW
=®(Mj+®(ﬂj—1=c1>(8.183)+q>(0.936)—1
1.805 1.805

=1.000+0.936 —1=0.936 or 93.6%.

The resulting in-tolerance probability reflects the revised guutp estimate and its associated
uncertainty. Figure G-6 shows the value of £ with black bars that depict 95% confidence limits
equal to £ 1.96 x 1.805 uW or £ 3.54 uW.

f(€UUT,b)

-8.38 uW +9.14 pW

F gUUT,b

0 6.39uW

Figure G-6. Bayesian UUT Parameter Bias Estimate
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APPENDIX H - ROTAMETER ANALYSIS EXAMPLE

The purpose of the rotameter uncertainty analysis is to

1. Estimate the uncertainties in gas flow rates used in the calibration of the

rotameter.

2. Use these uncertainties in the establishment of the rotameter regression equation

(i.e., calibration curve).

3. Estimate the uncertainties in flow rates predicted from the rotameter regression

equation.

H.1 Measurement Process Overview

A Brooks model 1110 Series rotameter is calibrated with nitrogen gas using a Sierra Instruments
Series 101 Cal-Bench as the measurement reference, as shown in Figure H-1. The temperature
and pressure of the gas exiting the rotameter are measured with a Rosemount model 162C
platinum resistance thermometer (PRT) and a Wallace & Tiernan FA-139 Precision Aneroid

Barometer, respectively.

Gas Flow Calibrator

A

Computer

Nitrogen

_____

Control Box

Gas

\4

Master
Mass Flow
Controller

Measurement
Reference

Figure H-1. Rotameter Calibration Setup

Outlet Gas
Temperature and
Pressure Sensors

uuT
Rotameter

The rotameter scale readings at the center of the steel ball are collected for six flow rates. The
measurement reference flow rates are corrected for the outlet gas pressure and temperature using

equation (H-1).
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P

T
_ std
Rcorr - Rref X( X

1/2
—out H-1
T j (H-1)

out std
where
Rret = measurement reference mass flow rate in standard cubic centimeters per
minute (sccm)
Pout = outlet gas pressure, psia
Tout = outlet gas temperature, °R
Psta = standard pressure, 14.696 psia

Tsww = standard temperature, 529.67 °R

The resulting calibration data are listed in Table H-1. The primary purpose of the calibration is
to establish a third-order polynomial regression equation using the corrected flow rates and
corresponding rotameter scale readings.

Table H-1. Rotameter Calibration Data (Steel Ball)96

uuT Outlet Outlet Measurement
Rotameter Gas Gas Reference Corrected
Scale Pressure | Temperature | Mass Flow Rate | Flow Rate
Reading (psia) (°O) (sccm) (ccm)
15.00 14.850 23.1 548.69 547.68
30.00 14.850 23.1 1356.75 1354.25
60.00 14.850 23.0 2937.12 2931.21
90.00 14.855 22.9 4551.52 4540.84
120.00 14.855 22.9 6227.96 6213.34
150.00 14.860 22.6 7881.43 7857.62

H.1.1 Regression Analysis

In regression analysis, a trend line is fit to the observed data. For example, a third-order
regression equation is expressed as

¥ =D, +bx+0bx* +bx (H-2)

where Y is the predicted value (e.g., flow rate), X is the corresponding independent variable

(e.g., rotameter scale reading) and by, by, b, and b; are the regression coefficients. The
regression coefficients are determined by minimizing the residual sum of squares (RSS).

k
~ \2
RSS = 3 wi (yi - i) (H-3)
i=1
where
w; = weighting factor
Yi = measured value
k = number of measured values used in regression analysis

% Wyle Laboratories Calibration Data Sheet, Metrology Number Z56093, 27Feb08
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The weighting factor w; is defined as

2]
w = < (H-4)

where o is the uncertainty in y; and

o = 1 (H-5)

of

T

Once the regression coefficients are determined, then the stage is set for predicting values of V;

given values of X. Each predicted value also has an associated uncertainty that must be
estimated.

H.2  Uncertainty Analysis Procedure

To estimate the uncertainty in the corrected flow rates listed in Table H-1, all relevant
measurement process errors must be identified and combined in an appropriate manner.

Given equation (H-1), the error equation for Reoyr s

= + + H-
chorr CRref SRref CPout gPout CTout gTout ( 6)
where
&r — error in the measurement reference flow rate
&p, = error in the outlet gas pressure measurement
&r,, = error in the outlet gas temperature measurement

The coefficients in equation (H-6) are sensitivity coefficients that determine the relative
contributions of the error sources to the overall error in the corrected flow rate.

The error in the measurement reference flow rate is comprised of errors due to the bias and
resolution of the Sierra Instruments 101 Cal-Bench.

= + H'7
gRref gRref b 8Rref T ( )
where
ERye , — Measurement reference bias
&ry , — Measurement reference resolution

Similarly, the error in the outlet gas pressure measurement is comprised of errors due to the bias
and resolution of the Wallace & Tiernan FA-139 Precision Aneroid Barometer.
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(H-8)

where

= barometer measurement bias

gpout,b
&p,,., — barometer resolution error

The error in the outlet gas temperature measurement is comprised of errors due to the bias and
resolution of the Rosemount model 162C PRT.

gTout - gTout,b + gTout,r (H_9)
where
&1, — PRT measurement bias
&1, — PRT resolution error
Substituting equations (H-7) through (H-9) into equation (H-6), the error equation for the
corrected flow rate can be expressed as
chorr - CRref (gRref b + gRref r )+ CPout (gpout,b + gPout,r )+ CTout (gTout,b + gTout,r ) (H_IO)

Brief descriptions of the measurement process errors are provided below.

H.2.1 Measurement Reference Flow Rate (ep . and & . )

The most recent calibration report’’ for the Sierra Instruments Series 101 Cal-Bench indicates an
expanded uncertainty of = 0.5% of reading. The expanded uncertainty corresponds to coverage
factor of k =2 . In this analysis, the measurement reference bias is assumed to follow a normal
distribution.

The Series 101 Cal-Bench has a digital resolution of 0.001 sccm, so the resolution error limits
are = 0.0005 sccm (i.e., half the resolution). The digital resolution error is uniformly distributed
with error limits that represent 100% containment limits.

)

The Wallace & Tiernan FA-139 Precision Aneroid Barometer has a span of 13.75 to 15.25 psia
(28 to 30 in Hg). The accuracy specification of the barometer is + 0.3% of full scale.”® In this
analysis, the manufacturer specified accuracy is interpreted to be

H.2.2 Outlet Gas Pressure (¢p and &p

i% x(15.25—13.75)psia = +0.003x 1.5 psia = +0.0045 psia .

7 Wyle Reference Standards Laboratory Report of Test Number 6.85331.02, June 24, 2008.

% Wallace & Tiernan Technical Data Sheet — Precision Aneroid Barometer, Types FA-112, FA-139, FA-160, FA-185, Cat. File
610.100, Revised 7-89.

225



The bias in the barometer pressure is assumed to follow a normal distribution and the accuracy
limits are assumed to represent 95% containment limits.

The FA-139 barometer has an analog resolution of 0.005 psi (0.01 in Hg). The resolution error
limits are + 0.0025 psi and are assumed to represent 95% containment (confidence) limits. The
analog resolution error is assumed to follow a normal distribution.

H.2.3 Outlet Gas Temperature (¢r  and &r

out,r

)

The Rosemount model 162C PRT has an accuracy of + 0.22 °C and it’s output is read with an
Instrulab RTD monitor that has a digital resolution of 0.01 °C.*”° The bias in the PRT
temperature is assumed to follow a normal distribution. The accuracy limits are assumed to
correspond to 95% containment limits.

The digital resolution error limits are + 0.005 °C. The digital resolution error follows a uniform
distribution with an associated 100% containment probability.

H.2.4 Uncertainty in Reorr
The uncertainty in the corrected rate is equal to the square root of the distribution variance for

u‘chorr = lvar(eRcorr) (H-11)

Applying the variance operator to equation (H-10), and noting that there are no correlations
between error sources, gives

& .
Reorr

uERcorr var (gRCOrr )

2 2 2
CRref var (gRref b ) + CRref var (gRref ' ) + CPout var (8P0ut’b ) (H-12)

2 2 2
+ CPout var (gpout,r ) + CTout var (gTout,b ) + ut var (gTout,r )

The variance terms in equation (H-12) are equivalent to the square of the uncertainty in the
corresponding error (e.g., var(eg )= u?R ). So, equation (h-12) can be rewritten in terms of
ret, ref ,b

the individual measurement process uncertainties.

2 2 @l sl
ref gRref ’b ref gRref’r out gPout’b out gpout’r (H 13)
U, = ]
R
corr n 2 2 i 2 u2

u
CTout gTout,b CTout gTout,r

The partial derivative equations used to compute the sensitivity coefficients are given in
equations (H-14) through (H-16).

% Wyle Reference Standards Laboratory Report of Test Number 6.85331.02, June 24, 2008.
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1/2
Cr.. = Reorr _ Pstd % Tout (H-14)
ref aRref

Fout  Tstd
1/2
Co = Reorr _ 1 Rref X Pstd % Tout y Po—u§[/2 (H-15)
out Pout 2 Tstd
1/2
Crogt = 2T = - Rt x{—PStd J xTout' (H-16)
Moyt 2 Pout * Tstd

The measurement process uncertainties are estimated from the specification limits, containment
probability (confidence level) and the inverse error distribution function.

The measurement reference bias uncertainty is estimated using the + 0.5% or reading tolerance
limits, the inverse normal distribution function, @', and a 0.95 containment probability (95%
confidence level). The bias uncertainty in a measurement reference flow rate of 2937.12 sccm is
computed for illustrative purposes.

U ~0.005x2937.12sccm _ 14.69 sccm
ZRret b o1 ( 1+ 0.95j 1.9600
2

=7.49sccm

The measurement reference digital resolution uncertainty is estimated using the + 0.0005 sccm
tolerance limits, the inverse uniform distribution function and a 1.00 containment probability
(100% confidence level).

_0.0005sccm  0.0005 sccm

u = :2.89><10_4 sccm
“Rref r 3 1.732

The barometer bias uncertainty is estimated using the + 0.0045 psia tolerance limits, the inverse
normal distribution function, @', and a 0.95 containment probability (95% confidence level).

0.0045 psia 0.0045 psia .
u = = =0.0023 psi
ERout o o1 (1 + o.95j 1.9600 P

2

The barometer resolution uncertainty is estimated using the + 0.0025 psia tolerance limits, the
inverse normal distribution function, @', and a 0.95 containment probability (95% confidence
level).

u, __0.0025psia :0'0025p51a=0.0013psia
Pout.r CI)_1(1+0.95J 1.9600

2
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The PRT bias uncertainty is estimated using the + 0.22 °C tolerance limits, the inverse normal
distribution function, @', and a 0.95 containment probability (95% confidence level).

0.22°C 0.22°C
u = = :30 1410(3
ETout o] [1 + 0.95) 1.9600
2

The PRT digital resolution uncertainty is estimated using the = 0.005 °C digital resolution limits,
the inverse uniform distribution function and a 1.00 containment probability (100% confidence
level).

~0.005°C _ 0.005°C

u = = =0.003°C
out r 3 1.732

The estimated measurement process uncertainties and sensitivity coefficients are summarized in
Table H-2. The component uncertainty is the product of the standard uncertainty and the
sensitivity coefficient.

Table H-2. Measurement Process Uncertainties for Corrected Flow Rate = 2931.21 sccm

Error + Error Error Confid. Standard Sensitivity Component
Source Limits Distribution| Level | Uncertainty Coefficient Uncertainty
Rt p | T 14.69 sccm | Normal 95 7.49 sccm 0.9980 7.47 sccm
éry . |£0.0005scem| Uniform | 100 | 2.89x10% scem 0.9980 2.88x10™ sccm
Erpurp | T 0.0045 psia Normal 95 0.0023 psia | - 98.71 sccm/psia | 0.227 sccm
ugpout,r +0.0025 psia | Normal 95 0.0013 psia | - 98.71 sccm/psia | 0.128 sccm
ETouth +0.22 °C Normal 95 0.11 °C 4.95 sccm/°C 0.545 sccm
uSTout,r +0.005 °C Uniform 100 0.003 °C 4.95 sccm/°C 0.015 sccm

The uncertainty in Reorr is computed by taking the root sum square of the component
uncertainties.

u
“Reorr

2
= \/(7.47)2 +(2.88x107) +(0.227)7 + (0.128)” +(0.545)” +(0.015)” scem

—55.801+8.29x10™% + 0.0515 + 0.0164 + 0.2970 + 2.25x 10~ scem
=4/56.166 sccm = 7.49 sccm

The Welch-Satterthwaite formula is used to compute the degrees of freedom for u eR. -
corr
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u
€R
" —_ corr (H- 17)
€Rr 4 4 4 4 4 4
corr R < R c CP u
ref  ©Rref b ref  “Rpef r out ¢ Pout,b
V V V,
u u u
“Rref b “Rref EPout,b
C4 u 4 4 u 4 4 u 4
Pout gPout,r out €T, out.b N out €T, out,r
V, V V
u u u
L gpout, r ‘c’Tout,b éTout, r

The degrees of freedom for all of the process uncertainties are infinite. Therefore, the degrees of

freedom for U, are also infinite.
corr

The pareto chart, shown in Figure H-2, indicates that the measurement reference bias uncertainty

is the largest contributor to the uncertainty in Reorr.

Cal-Bench Bias, &gt

Temperature Bias, &
Gas Temperature Bias, Tout

Gas Pressure Bias,ep

Gas Pressure Resolution, &p,

ut,r

Gas Temperature Resolution,er

Cal-Bench Resolution, &gt r

0

10 20
Percent Contribution to Corrected Flow Rate Uncertainty U,

30

40

50

60 70 &0

90 100

corr

Figure H-2. Pareto Chart for Corrected Flow Rate Uncertainty

Uncertainty estimates for all of the corrected flow rate data are summarized in Table H-3.

Table H-3. Uncertainty Estimates for Corrected Measurement Reference Flow Rates

Standard
uuT Outlet Outlet Measurement | Corrected | Uncertainty
Rotameter Gas Gas Reference | Flow Rate u Degrees
Scale Pressure | Temperature | Flow Rate Reorr “Reorr of
Reading (psia) (°O) (sccm) (ccm) (ccm) Freedom
15.00 14.850 23.1 548.69 547.68 1.40 0
30.00 14.850 23.1 1356.75 1354.25 3.47 0
60.00 14.850 23.0 2937.12 2931.21 7.49 0
90.00 14.855 22.9 4551.52 4540.84 11.62 0
120.00 14.855 22.9 6227.96 6213.34 15.90 0
150.00 14.860 22.6 7881.43 7857.62 20.11 0
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H.3  Predicted Flow Rate Uncertainty

As previously discussed, the rotameter is calibrated to establish a third-order polynomial
equation that can be used to predict gas flow rates. Ideally, a weighted least squares regression
analysis would be conducted to establish the appropriate equation coefficients. The solution for
the coefficients are estimated using the following matrix equation

b =(X'WX)"' X'WY (H-18)
where
2 3
b() 1 XXX Wy 0 Y1
2 3 W
| x=|1 %2 % % w=| 2 y=| %2
b2 . :
b3 1 X X X 0 W Yk

k is the number of X data points and X' is the transpose of X. The weighting factor matrix W
consists of the estimated uncertainties for the y measured values.

In the absence of a dedicated regression analysis software program or a sophisticated statistical
analysis package, a non-weighted regression fit is often obtained using a standard spreadsheet
application.

The non-weighted third-order polynomial equation obtained by applying the Microsoft Excel
Add Trendline function for the corrected flow rate versus rotameter scale reading data is given
in equation (H-19).

Reale = —218.667 +51.325x + 0.022x> — 0.000034x° (H-19)

where
Recalc = calculated or predicted flow rate in cubic centimeter per minute (ccm)
X = rotameter scale reading

The error equation for Regc is the sum of the corrected flow rate error and the regression fit error.
8Rcalc - 8Rcorr + 5reg (H-20)

The uncertainty in the calculated rate is equal to the square root of the distribution variance for

&£ .
Realc

uchaIc - \/WRcalc) - \/Var<chorr + Ereg ) (H-21)

Noting that there are no correlations between the corrected flow rate and regression fit errors, the
uncertainty in the calculated or predicted flow rate is computed from equation (H-22).
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UchaIc = \/mr (chorr ) + var (5reg ) = \/uz +u? (H-22)

“Reorr ‘reg

The uncertainty due the regression fit is called the standard error of forecast.'” The standard
error of forecast accounts for the fact that regression equation (H-19) was generated from a finite
sample of data. If another sample of data were collected, then a different regression equation
would result. The standard error or forecast considers the dispersion of various regression
equations that would be generated from multiple sample sets around the true population
regression equation. The standard error of forecast is computed from

St :sy’XJ1+x’(X’WX)_1x (H-23)

where Sy is the standard error of estimate, X' is the transpose of X and
X=| , (H-24)

The standard error of estimate is a measure of the difference between actual values and values
estimated from a given regression equation. The standard error of estimate is also defined as the
standard deviation of the normal distributions of y for any given X. The standard error of
estimate is computed from

(H-25)

where ¥ is the predicted or calculated value and m is the order of the regression equation (i.e., m

=1, 2, 3 or higher). A regression analysis that has a small standard error of estimate has data
points that are very close to the regression line. Conversely, a large standard error of estimate
results when data points are widely dispersed around the regression line. The degrees of freedom
for syx 1s

vs, =k—(m+1) (H-26)

y.X

The standard error of estimate for the flow rate equation (H-19) is computed to be

N2
/Z y—-y 676.73
Sy.x = k(—(3+3) = 6—d cem =+/338.37 ccm =18.4 ccm

and the associated degrees of freedom are

19 Hanke, J. et al: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984.
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ve, =k-(m+1)=6-(3+1)=2

Y, X
The degrees of freedom for St are equal to those for Syx.

The data used to compute the standard error of estimate are listed in Table H-4. The standard
error of forecast for each value of X is also listed.

Table H-4. Standard Error of Forecast for Regression Equation (H-19)

Predicted or Standard Dearees
Rotameter | Corrected | Calculated 11;:(1;22 ;St; L(g)f
Scale |Flow Rate FlowARate A 2 Freedom
Reading y y y-y (y-9) St y
X (ccm) (ccm) (ccm) (ccm?) (ccm) St
15.00 547.68 556.06 -8.38 70.22 25.0 2
30.00 1354.25 | 1340.05 14.2 201.64 22.1 2
60.00 2931.21 | 2933.01 -1.80 3.24 23.3 2
90.00 4540.84 4554.65 - 13.81 190.72 22.2 3
120.00 6213.34 6199.42 13.92 193.77 23.7 4
150.00 | 7857.62 | 7861.76 -4.14 17.14 25.8 5
X =77.50 >(y-9)* =676.73

Setting u Ereg equal to Sy, the uncertainties in the calculated rates can now be computed using

equation (H-22). For example, the uncertainty in the calculated rate Rey = 2933.01 ccm is

= U2 +U2

Realc “Reorr Ereg
2 2
- \/(7.49) +(23.3)" cem
=+/598.99 ccm=24.5¢ccm

The degrees of freedom for u R TC computed using the Welch-Satterthwaite formula.
cailc

u u u
vy _ Realc _ Realc — 9w Realc (H-27)
e 4 4 4 4 4
Rcalc Ug u ug u Ug
Reorr L ‘reg Reorr + ‘reg reg
0 2

V V
u u
EReorr ‘reg

The degrees of freedom are expressed as the nearest whole number value. For example, the

degrees of freedom for u Reate 24.5ccm are computed to be
calc
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&
:2x%:2x
u

€reg

=2x1.22=244=2

(ET = 2x(1.05)*

Vi
u 233

&
Realc

The confidence limits for Reac can be expressed as

Realc £ty/2,0 XU (H-28)

“Realc
where t, /2,v is the Student’s t-statistic. For a 95% confidence level, ty 00252 = 4.3027 and the

confidence limits for Rea = 2933.01 ccm are computed to be

2933.0lcecm +£4.3027 x24.5cem

or
2933.0lccm +105.31ccm

The above confidence limits can also be expressed as a percentage of the full scale (FS) output of
the rotameter.

4 105.31ccm

7861.76 ccm

or
2933.01ccm +£1.34%

2933.01ccm x 100%

The computed uncertainties, degrees of freedom and 95% confidence limits for calculated rates
at six rotameter readings are listed in Table H-5. The manufacturer specified accuracy of the
Series 1110 rotameter is + 2% FS.'"”" The 95% confidence limits computed for the UUT
rotameter fall within the accuracy specifications.

Table H-5. Uncertainties for Calculated Flow Rates

Corrected Calculated

Flow Rate | Regression | Flow Rate Degrees
Rotameter|Calculated| Uncert. Uncert. Uncert. of Student’s 95% 95%
Scale |Flow Rate Y Freedom t_statistic Conf. | Conf.
Reading Realc “Reorr reg € Realc Vu, ¢ Limits | Limits
X (ccm) (ccm) (ccm) (ccm) Realc a/2,v | (ccm) | (% FS)
15.00 556.06 1.40 25.0 25.0 2 4.3027 |+107.74| +1.37
30.00 1340.05 3.47 22.1 22.4 2 43027 | £ 96.25| £1.22
60.00 2933.01 7.49 23.3 24.5 2 43027 [£105.31| +1.34
90.00 4554.65 11.62 22.2 25.1 3 3.1824 |+ 79.74| +£1.01
120.00 | 6199.42 | 15.90 237 285 4 | 27765 |+ 7924 +1.01
150.00 | 7861.76 20.11 25.8 32.7 5 2.5706 |+ 84.09| +1.07

%" Design Specifications DS-1110-1140 for 1110 and 1140 Series Glass Tube Full-View Flowmeters, Brooks Instruments,
January 1998.
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APPENDIX | = WINGBOOM AOA ANALYSIS EXAMPLE

The purpose of this analysis is to estimate the overall uncertainty in an aircraft wingboom angle
of attack (AOA) measurement. The wingboom AOA measurement uncertainty is estimated
using the system analysis procedure discussed in Chapter 7.

1.1 Measurement Process Overview

A BEI Model 1201 5k Ohm potentiometer, with a maximum rotational travel of 354°, is the
primary sensor used to measure the wingboom AOA. The potentiometer output voltage is run
through a SCD-108S signal conditioning card manufactured by Teletronics Technology
Corporation (TTC). The signal conditioning card consists of an 8-channel multiplexer,
amplifier, low-pass filter, and analog to digital converter (ADC).

The ADC uses 12-bit precision to convert the continuous voltage signal to a binary code.
Therefore, the output signal from the ADC is a quantized value ranging from 0 to 4095 counts
(i.e., 2'2-1)."% The ADC counts output is converted back to a wingboom angle using a linear
equation obtained from a regression fit of calibration data.

The wingboom AOA measurement system is calibrated from - 45° to + 45° using an

E-2C 535 Boom Universal Calibrator Fixture. The calibrator fixture is, in turn, calibrated
according to the LIST-A020 procedure.'” The wingboom AOA calibration data'® are listed in
Table I-1.

Table I-1. Wingboom AOA Calibration Data

Meas. ADC | Applied | Meas. ADC | Applied

Number | Counts | Angle | Number | Counts | Angle
1 2052 0.875 18 2714 15.875
2 1878 -4.125 19 2931 20.875
3 1630 -9.125 20 3144 25.875
4 1378 -14.125 21 3361 30.875
5 1142 -19.125 22 3575 35.875
6 716 -29.125 23 3789 40.875
7 289 -39.125 24 4002 45.875
8 76 -44.125 25 3788 40.875
9 289 -39.125 26 3575 35.875
10 717 -29.125 27 3361 30.875
11 1142 -19.125 28 3144 25.875
12 1378 -14.125 29 2929 20.875
13 1629 -9.125 30 2712 15.875
14 1878 -4.125 31 2494 10.875
15 2052 0.875 32 2274 5.875
16 2273 5.875 33 2053 0.875
17 2496 10.875

192 Email from Kenneth Miller, CIV NAVAIR to Dr. Howard Castrup, Integrated Sciences Group, Sent: 7/13/04 Subject: LSBF
Coefficient Significant Digits.

103 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003.
104 Calibration Data Sheet, C-2A, 162142 NP2000, TMATS File: H:\projects\C2 NP2000\C2np2k07.tma
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A regression analysis was conducted to obtain an unweighted least squares best fit (LSBF) to a
straight line, as shown in Figure I-1.

50

" -

30 /
20 /
10
Wingboom 0 /
Angle /
-10

y = 2.28024667E-02x - 4.58344099E+01
R2=9.99756780E-01
-40 / —]
-50
50 550 1050 1550 2050 2550 3050 3550 4050
Counts

Figure I-1. Straight Line Fit of Calibration Data
The straight line fit equation (I-1) is used to convert the recorded counts data to wingboom angle.

Wingboom Angle = 0.0228 x Counts - 45.83 (I-1)

1.2 System Model

The wingboom AOA measurement is made through a linear sequences of stages or modules as
shown in Figure I-2. The output, Y, from any given system module comprises the input of the
next module in the series. Since each module’s output carries with it an element of uncertainty,
this means that this uncertainty will be present at the input of a subsequent module.

Angle  y Y, Y, Y,
of —¥» M, > M, > M, —»
Attack
Potentiometer Signal Data
Conditioner Processor

Figure 1-2. Block Diagram of Wingboom AOA Measurement System

1.3 System Input

In this example, a nominal wingboom AOA of 20° will be analyzed. The calibrator fixture is
used to provide the wingboom AOA. Therefore, any uncertainty in the angle established by the
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calibrator fixture must be determined and included in this analysis. The following error sources
are considered relevant for the calibration fixture angle:

e Bias of calibrator fixture angle
e Measurement repeatability or random error

1.3.1 Calibrator Fixture Bias

The E-2C 535 calibrator fixture is reported to have tolerance limits of = 0.25° of the angle
established via the LIST-A020 procedure.'” For the purposes of this analysis, these limits are
assumed to represent a 99% confidence limits for a normally distributed error.

1.3.2 Measurement Repeatability

Repeatability or random error results from variations that are manifested through repeat
wingboom AOA measurements over a short time period. Repeatability uncertainty can have
units of the potentiometer output or signal conditioner output depending on the calibration
procedure used. As seen from the calibration data listed in Table I-1, the LIST-A020 procedure
calibrates the potentiometer and signal conditioner as a combined unit. Therefore, repeatability
should be evaluated as an error source in the signal conditioning module (M,).

1.4 System Modules

The following subsections describe the measurement system modules in detail, identifying error
sources and defining appropriate module output equations. Manufacturer specifications will be
used to establish error limits. Manufacturer specification documents, as well as other reference
materials used in this analysis, are listed in the footnotes.

1.4.1 Potentiometer Module (M;)

The first module consists of the Model 1201 5k Ohm potentiometer manufactured by BEI
Technologies, Inc. Potentiometers are essentially a resistor, Rp, connected to a voltage source,
V, with a moving contact or wiper.'” The resistor is “divided” at the point of wiper contact and
the voltage output signal, Vo, is proportional to the voltage drop across the resulting load
resistance, R, as shown in Figure I-3a.

Vo
N Full-scale output__
[R=
| £
Wiper = 85
Vv e = | 8
e L E 2
<’ 5 =
Vo >R, S P
< =
| -~ X
Displacement (%) Xp

Figure I-3. a. Potentiometer Circuit  b. Ideal Linear Response Characteristic

105 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003.
19 Measurement, Instrumentation, and Sensors Handbook, CRCnetBase 1999, John G. Webster Editor-in Chief.

236



Potentiometers are commonly designed to generate a DC voltage output that is linearly
proportional to rotational or lateral displacement X/Xp, as shown in Figure I-3b. The
potentiometer voltage output is then expressed as

Vo =V xK XL (I-2)
Xp

where K is the potentiometer sensitivity, X is the input angle in degrees and X, is the maximum
angle that the potentiometer can travel.

When developing an uncertainty analysis for the potentiometer module, the impact that errors in
Vi, K, X and X, will have on the output value must considered. In addition, manufacturer
specifications for the Model 1201 5k Ohm potentiometer'®’ indicate that there are other error
sources that affect the potentiometer output. The following error sources are applicable to the
output of the potentiometer module:

o Calibrator Fixture Angle
 Supply Voltage

e Maximum Angle

o Sensitivity

e Linearity

» Resistance

 Noise

 Resolution

o Temperature Coefficient

1.4.1.1 _ Calibrator Fixture Angle (&x)

As previously discussed, a nominal angle of 20 1is applied by the calibrator fixture. The
calibrator fixture is reported to have tolerance limits of + 0.25° of the applied angle. These
limits are assumed to represent a 99% confidence limits for a normally distributed error.

14.1.2  Supply Voltage ( &y, )

Since the potentiometer is a passive sensor, the signal conditioner must provide a regulated DC
voltage or current via a precision power supply. The SCD-108S signal conditioner supplies an
external excitation voltage of 5 V to the potentiometer. The excitation voltage accuracy is stated
to be + 0.3% maximum. In this analysis these limits are assumed to represent 95% confidence
limits for a normally distributed error.

[4.13 Maximum Angle (&, )

The specification sheet for the BEI Model 1201 potentiometer indicates a maximum or actual
electrical travel of 354° + 2°. We interpret the £ 2° limits to represent 95% confidence limits for
a normally distributed error.

17 Specification sheet for BEI Model 1201 Servo Mount Wirewound Single-turn Precision Potentiometer, www.beiduncan.com.
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L4.1.4  Sensitivity (&)

The potentiometer sensitivity is the dimensionless slope of the linear response curve shown in
Figure [-3b. Ideally, the potentiometer sensitivity should have a value of unity. However,
variation in potentiometer sensitivity can occur due to temperature effects, drift, hysteresis or
other factors.

.4.1.4.1 Linearity (£l)

Linearity, or more appropriately non-linearity, is a measure of the deviation of the actual input-
to-output performance of the device from an ideal linear relationship. Linearity error is fixed at
any given input, but varies with magnitude and sign over a range of inputs. Therefore, it is
considered to be a normally distributed error.

The specification sheet for the BEI Model 1201 indicates linearity tolerance limits of + 0.5% of
full scale (FS) for standard conditions and + 0.2% FS for best practical conditions. The + 0.5%
FS limits are used in this analysis and are be assumed to represent 95% confidence limits for a
normally distributed error.

1.4.1.4.2 Resistance (&r)

Total resistance is a key parameter because it determines the amount of current drawn for a given
applied voltage. Because potentiometer resistance can change over time between calibrations, it
is important to estimate how resistance error impacts overall uncertainty.

Manufacturer specifications indicate that the resistance tolerance limits for the BEI Model 1201
are + 3% FS for standard conditions and + 1% FS for best practical conditions. The + 3% FS
limits are used in this analysis and are assumed to represent 95% confidence limits for a
normally distributed error.

1.4.1.4.3 Noise (&x)

Non-repeatability or random error intrinsic to the device, that causes the output to vary from
observation to observation for a constant input, is usually specified as noise.

Manufacturer specifications indicate that the equivalent noise resistance (ENR) has a maximum
value of 100 Ohms. Potentiometer noise, in relation to the total potentiometer resistance of
5,000 Ohms, can be expressed as = 2% of FS. In this analysis, the + 2% of FS limits are
assumed to represent 95% confidence limits for a normally distributed error.

1.4.1.4.4 Resolution (&res)

Resolution defines the smallest possible increment of voltage change that can be produced and
detected. In wire-wound coil potentiometers, resolution is the voltage drop in one turn of
resistance wire. The best attainable resolution is 1/N x 100% of full scale voltage or resistance,
where N is the number of turns in the coil. Resolution can also be expressed in terms of travel in
inches or degrees.

The specification sheet for the BEI Model 1201 contains a footnote that indicates that Resolution
Tables are available by model number and resistance value. The manufacturer was contacted
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and they indicated resolution limits of + 0.11% FS. These limits are assumed to represent 100%
confidence limits for a uniformly distributed error.

1.4.1.4.5 Temperature Coefficient (&rc)

Resistance increases with temperature. Therefore, the potentiometer sensitivity will be affected
by temperature variation. However, this may not be a major concern as long as the changes in
resistance are uniform and the potentiometer is operated within its rated temperature range. In
general, wire-wound potentiometers have very low temperature coefficients.

The temperature coefficient tolerance limits specified for the BEI Model 1201 are + 0.007%/°C.
These limits are assumed to represent 95% confidence limits for a normally distributed error.

A temperature range of 50°C with associated error limits of + 2 °C are used in this analysis. The
+ 2 °C limits are assumed to represent 95% confidence limits for a normally distributed error.

1.4.1.4.6 Potentiometer Output Equation

The output equation for the potentiometer module is expressed in equation (I-3). Table I-2
contains the relevant information for the equation parameters.

Pout + &y, =Vo + 8y, = (Vi +4y, ) (K + &) x); i:ip (1-3)
where
EK =EL +ER +EN +Eres T 7C X (AT + 657 (14)
=& +ER T EN t+ Epes T ETC X AT +&7¢ X EAT
and AT and &aT are the temperature range and corresponding error, respectively.
Table I-2. Parameters used in Potentiometer Module Equation
Equation Nominal or Error Percent Error
Parameter Description Mean Value Limits Confidence | Distribution
V| Supply Voltage 5V
&y, Supply Voltage Error ov +15mV 95 Normal
X Calibrator Fixture Angle 20°
& Fixture Angle Error 0° +0.25° 99 Normal
Xp Maximum Angle 354°
EXp Max. Angle Error 0° +2° 95 Normal
K Potentiometer Sensitivity 1.0
a Sensitivity Linearity 0 +0.005 95 Normal
& Resistance Error 0 +0.03 95 Normal
&N Noise 0 +0.02 95 Normal
Eres Resolution Error 0 +0.0011 100 Uniform
&rc Temperature Coefficient 0 +0. 7e*/°C 95 Normal
AT Temperature Range 50 °C




ET Temperature error ‘ 0°C ‘ +2°C 95 Normal

1.4.2  Signal Conditioner Module (M,)

The voltage signal entering the SCD-108S signal conditioning card is converted to a quantized
value ranging from 0 to 4095 counts (i.e., 2'?-1). The manufacturer specifications for the SCD-
108S signal conditioning card'® state an accuracy of £ 0.5%. As previously discussed in Section
1.3.2, repeatability or random error must also be considered in the analysis of the signal
conditioner module.

The following error sources are applicable to the output of the signal conditioner module:

e Signal conditioner bias
e Quantization error
o Measurement repeatability

14.2.1 Signal Conditioner Bias (&sc, )

TTC, the manufacturer of the SCD-108S, was contacted to obtain clarification regarding the
accuracy specification limits. TTC stated the accuracy limits are a percent full scale output and
that the associated confidence level is 99%. The full scale output of the SCD-108S is 4095
counts. Therefore, the accuracy limits are + 20.475 counts. In this analysis, the signal
conditioner bias is assumed to be normally distributed.

1.4.2.2 Quantization Error ( £scq )

During quantization, a finite number is used to represent a continuous value. The resulting
resolution limit from the quantization of a 5 V signal using a 12-bit ADC is 5 V/(2'*) or 1.2 mV.
The quantization error limits are half the resolution or + 0.6 mV and represent 100%
containment (i.e., confidence) limits for a uniformly distributed error.

1.4.2.3 Measurement Repeatability (grep).

The LIST-A020 procedure only allows for the collection of two repeat measurements at
calibration fixture angle. Therefore, there are insufficient data to evaluate the effects of
measurement repeatability.

1.4.24 Signal Conditioner Output Equation

The 0 to 4095 counts output range of the SCD-108S corresponds to the positive and negative
voltages for angles ranging from - 45° to + 45°. The conversion from volts to counts is equal to
4095 counts/90° x 354°/5V or 3221.4 counts/V. An angle of 0°corresponds to signal conditioner
output of 2'" or 2048 counts.

The output equation for the signal conditioner module is expressed in equation (I-5). Table I-3
contains relevant information for the equation parameters.

1% SCD-108S Signal Conditioning Card Specifications, www.ttcdas.com.
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SCout = (Pout +op,, + 50, ) xCy +Cy + &5, (I-5)

where
X 20°
Pout =V) xKx——=5V x1x =0.282V
Xp 354°
Table 1-3. Parameters used in Signal Conditioner Module Equation
Parameter Nominal or Error Percent Error
Name Description Mean Value Limits Conf. Distribution
Potentiometer
Pout Output 0282V
Potentiometer
P
Pout Output Error oV
sc,, Signal (];ci);lsdnmner ov +20.475 Counts 99 Normal
3 SCq Quantization Error ov + 0.6 mV 100 Uniform
C Conversion Coeff. | 3,221.4 Counts/V
C2 Conversion Coeff. 2048 Counts

1.4.3 Data Processor Module (M3)

The data processing module takes the quantized ADC output and computes a wingboom angle
using the linear regression equation (I-1) obtained from calibration data. Errors associated with
data processing result from computation round-off or truncation and from residual differences
between values observed during calibration and values estimated from the regression equation.
Regression error is the primary error source for the data processor module.

L4.3.1  Regression Error (°"9)
A linear regression equation is typically expressed as

Y = by +bx (1-6)

where ¥ is the predicted value for a given X, by is the value of y when X equals zero, and b
represents the amount of change in y with X.

In regression analysis, the standard error of estimate is a measure of the difference between
actual values and values estimated from a regression equation.'” The standard error

of estimate is also defined as the standard deviation of the normal distributions of y for any
given X.

1.4.3.1.1 Standard Error of Estimate

A regression analysis that has a small standard error of estimate has data points that are very
close to the regression line. Conversely, a large standard error of estimate results when data
points are widely dispersed around the regression line. The standard error of estimate is
computed using equation (I-7).

19 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984.
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s, = 20-9) (1-7)

The calibration data listed in Table I-1 and the linear regression equation (I-1) were entered into
a spreadsheet and the standard error of estimate was computed to be equal to 0.40°.

1.4.3.1.2 Standard Error of Forecast

As previously stated, the standard error of estimate is a measurement of the typical vertical
distance of the sample data points from the regression line. However, we must also consider the
fact that the regression line was generated from a finite data sample. If another data sample was
collected, then a different regression line would result. Therefore, we must also consider the
dispersion of various regression lines that would be generated from multiple sample sets around
the true population regression line.

The standard error of the forecast accounts for the dispersion of the regression lines and is
computed using equation (I-8).

(1-8)

where X is the average or mean of the X values.
The standard error of forecast is computed for each value of X. The wingboom AOA of 20° used
in this analysis corresponds to a value of 2930 counts, so St has a value of 0.408°. The

uncertainty due to regression error is equal to S .

1.4.3.2  Data Processor Output Equation

The output equation for the data processing module is expressed in equation (I-9). Table I-4
contains relevant information for the equation parameters.

DR, = (scOut +esc,, ) xC3 +Cy + &req (1-9)
where

SCout = Fout XC1 +C5
=0.282V x 3,221.4 Counts/V + 2048 Counts
= 908.4 Counts + 2048 Counts
=2,956.4 Counts

Table I-4. Parameters used in Data Processor Module Equation
Parameter Nominal or Standard | Percent Error
Name Description Mean Value Uncertainty | Confid. | Distribution

SCout Signal Conditioner Output | 2,956.4 Counts

Signal Conditioner
Output Error

£5Cout
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C; Regression Line Slope 0.0228°/Count

C, Regression Line Intercept -45.83°

Ereg Regression Error 0° 0.408°

1.5 Module Error Models

The next step is to develop an error model for each module. Equations (I-3) through (I-5) and
(I-9) provide the basis for the development of the module error models.

1.5.1 Potentiometer Module (M;)
The error model for the potentiometer module is expressed as

gPOUt :Cvl gvl +CK8K +ngx +CXP8XP

(I-10)
=0y, &, +Ck (6L T &R + &N + &res) + CATETC +Cx X +Cxp Exp

where Gy, , Ck, Cx, Cx, and Cxr are sensitivity coefficients that determine the relative

contribution of the error sources to the error in the potentiometer output. The partial derivative
equations used to compute the sensitivity coefficients are listed below.

oy =P X o = Py X o = P Vi XK
oV, Xp oK Xp X Xp

c :aPout :_V| x K x X e :apout :6P0ut % oK -V xLxAT

XP T oXp X2 ATT AT — oK “oaT ' Xp

1.5.2 Signal Conditioner Module
The error model for the signal conditioner module is expressed as

€SCout — CPout (gpout + Sscq )+ CSCb €scy, (I-11)

where Cp ~and Csc, are sensitivity coefficients that determine the relative contribution of the

error sources to the error in the signal conditioner output. The partial derivative equations used
to compute the sensitivity coefficients are listed below.

0SC
=—l=C Csc, =

0SCot
Fou OPout

agscb

=1

1.5.3 Data Processor Module
The error model for the data processor module is expressed as

€DPyyt = CSCoyt £SCoy + Cregéreg (I-12)
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where Cgc_ . and Crgq are sensitivity coefficients that determine the relative contribution of the

error sources to the error in the data processor output. The partial derivative equations used to
compute the sensitivity coefficients are listed below.

_ DRy ~ 0SCy

C = = Crog = =1
Cot ~ 2SC "0 Dereg

1.6 Module Uncertainty Models

The next step in the analysis procedure is to develop an uncertainty model for each module,
accounting for possible correlations between error sources.

1.6.1 Potentiometer Module

The uncertainty model for the potentiometer module output is developed by applying the
variance operator to equation (I-10).

u

=,/var
EPout (gpout )

Cy, &y, tCk (6L + &R T &N + Eres +ETC X CATEAT )

+Cxé‘x +CXP€XP

(I-13)
= |var

There are no correlations between error sources for the potentiometer module. Therefore, the
uncertainty in the potentiometer output can be expressed as

2 .2 2 2 2 2 2 2.2 2 .2
CV | u€v| + CK (USL + UgR + USN + ugres ) + CK uch CAT ugAT
Ugp = (I1-14)
o Alcqu? + cf( u?
€x P EXp

1.6.2 Signal Conditioner Module

The uncertainty model for the signal conditioner module output is developed by applying the
variance operator to equation (I-11).

u€scout = 4 'Var (gSCOUt )

(I-15)
= \/Var (Cpout SPOUt + CPOUt gSCq + CSCb EsCch )

There are no correlations between error sources for the signal conditioner module. Therefore,
the uncertainty in the signal conditioner output can be expressed as

2 2 2 2 2 2
u = |C u +C u +C u I-16
€sCout \/ Pout “€Rye  Fout €scq  SCb Escy (I-16)
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1.6.3 Data Processor Module

The uncertainty model for the signal conditioner module output is developed by applying the
variance operator to equation (I-12).

ugDPout - \/ Var<gDP0ut)

(I-17)
- \/VEII' (Cscout gSCout + Cn:-'g reg )

There are no correlations between error sources for the data processor module. Therefore, the
uncertainty in the data processor output can be expressed as

u :\/02 u? +c$egu§ (1-18)
re

EDPout SCout €5Coyt g

1.7 Estimate Module Uncertainties

The next step in the system analysis is to estimate uncertainties for the error sources identified
for each module and to use these estimates to compute the combined uncertainty and associated
degrees of freedom for each module output.

1.7.1 Potentiometer Module

As discussed in section 1.4.1, with the exception of resolution error, the error sources identified
for the potentiometer module are assumed to follow a normal distribution. Therefore, the
corresponding uncertainties can be estimated from the error limits, + L, confidence level, p, and

the inverse normal distribution function, ®'(-), as discussed in Chapter 3.

__ L
q)_1(1+ pj
2

For example, the uncertainty due to the supply voltage error is estimated to be

u

y - 0015V 0015V
gv - -
ol (1 + ;).95) 1.9600

=0.00765 V.

The resolution error follows a uniform distribution, so resolution uncertainty is estimated to be

00011 _0.0011

u =
bes [3 1.732

The estimated uncertainties for each potentiometer error source are summarized in Table I-5.
The component uncertainty for each error source is the positive product of the standard
uncertainty and the sensitivity coefficient. The uncertainty in the potentiometer output is
computed by taking the root sum square of the component uncertainties.

=0.000635.
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Table I-5. Uncertainty Analysis Results for Potentiometer Module

Error + Error Error Confidence Standard Sensitivity | Component
Source Limits Distribution Level (%) Uncertainty | Coefficient | Uncertainty
&y, 0.015V Normal 95 0.00765 V 0.0565 0.0004 V
& 0.25° Normal 99 0.0971° 0.01412 v/° 0.0014 V
gxp 2° Normal 95 1.02° -0.0008 V/° 0.0008 V
a 0.005 Normal 95 0.0026 0.282 0.00072 V
& 0.03 Normal 95 0.0153 0.282 0.0043 V
&N 0.02 Normal 95 0.0102 0.282 0.0029 V
Eres 0.0011 Uniform 100 0.000635 0.282 0.00018 V
&rc 7¢” /C Normal 95 3.57¢” /°C 14.1 Ve°C 0.0005V
Module Output
Output 0.282V Uncertainty 0.0055 vV

The pareto chart, shown in Figure 1-4, indicates that uncertainties due to resistance error and
noise are the largest contributors to the uncertainty in the potentiometer output.

Resistance, g5

Noise, gy

Fixture Angle, &y

Maximum Angle, &y

Linearity, g

Temperature Coefficient, &

Supply Voltage, &,

Resolution, g

0

10

20 30

40

50

Percent Contribution to Potentiometer Output Uncertainty

Figure 1-4. Pareto Chart for Potentiometer Module

1.7.2  Signal Conditioner Module

As discussed in Section 1.4.2, the signal conditioner bias is assumed to follow a normal
distribution. Therefore, the bias uncertainty is estimated to be

uf‘fsctJ a ) (
o

_20.475 Counts _ 20.475 Counts

1+ 0.99j

2.5758

=7.95 Counts.

The quantization error follows a uniform distribution, so the associated uncertainty is estimated

to be
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~0.0006V _ 0.0006V

u, = = =0.000346 V.
&scq 3 1.732

The estimated uncertainties for the signal conditioner error sources are summarized in Table I-6.
The uncertainty in the signal conditioner output is computed by taking the root sum square of the
component uncertainties.

Table 1-6. Uncertainty Analysis Results for Signal Conditioner Module

Error + Error Error Confidence | Standard Sensitivity Component
Source Limits Distribution| Level (%) | Uncertainty Coefficient Uncertainty
Pt 0.0055 V 3221.4 Counts/V | 17.72 Counts
‘9SCq 0.0006 V Uniform 100 0.000346 V| 3221.4 Counts/V | 1.12 Counts
€sc, 20.475 Counts| Normal 99 7.95 Counts 1 7.95 Counts
'C\)/IL(J)tdpliJIf CZ:ZiSn'?S Un(g::fal::lty 19.45 Counts

The pareto chart, shown in Figure I-5, indicates that the potentiometer output uncertainty is the
largest contributor to the uncertainty in the signal conditioner output.

Potentiometer Output, ep

Signal Conditioner Bias,gc,

Quantization Error,gscq

0 10 20 30 40 50 60 70
Percent Contribution to Signal Conditioner Output Uncertainty

Figure I-5. Pareto Chart for Signal Conditioner Module

1.7.3 Data Processor Module

As discussed in Section 1.4.3, the uncertainty due to regression error is equal to the standard error
of forecast. For a wingboom angle of 20° used in this analysis, the standard error of forecast was
computed to be 0.408°.

The data processor output is

DFout = SCout XC3 +C4
=2,956.4 Counts x 0.0228°/ Count — 45.83°
=67.41°—-45.83°
=21.6°

The estimated uncertainties for the data processor error sources are summarized in Table I-7.
The uncertainty in the data processor output is computed by taking the root-sum-square of the
component uncertainties.
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Table I-7. Uncertainty Analysis Results for Data Processor Module

Error + Error % Standard Sensitivity Component
Source Limits | Confidence| Uncertainty Coefficient Uncertainty
€SCout 19.45 Counts| 0.0228°/Count 0.443°
reg 0.408° 1 0.408°
Module Output 21.61° Uncertainty 0.603°

The pareto chart, shown in Figure I-6, indicates that the signal conditioner output uncertainty and
regression error uncertainty contribute almost equally to the data processor output uncertainty.

Signal Conditioner Output,zgc,

Regression Error, £

0 10 20 30 40 50 60 70
Percent Contribution to Data Processor Output Uncertainty

Figure 1-6. Pareto Chart for Data Processor Module

1.8 System Output and Uncertainty

In the system analysis approach, each module is analyzed separately and the output and
associated uncertainties for each module are propagated to subsequent modules. In the
evaluation of the wingboom AOA measurement system modules, it has been illustrated how the
uncertainty in the output of one module propagates through to the next module in the series. The
module outputs and uncertainties for the wingboom AOA measurement system are summarized

in Table I-8.

Table 1-8. Summary of Wingboom AOA Measurement System Analysis Results

Module Module Module Output Standard Degrees of
Name Input Uncertainty | Freedom
Potentiometer 20° 0.282V 0.0055 V ©
Signal Conditioner 0.282V 2958.0 Counts 19.45 Counts o0
Data Processor 2958.0 Counts 21.6° 0.60° 00

The system output and uncertainty are equal to the values computed for the last module in the
series. Therefore, the wingboom AOA measurement system has an output of 21.6° with an

uncertainty of 0.60°.
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