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Summary 

Assessing uncertainties is done systematically in almost all hard sciences research 
fields, and in more and more numerous engineering domains. In the field of urban 
water systems, this is still not a systematic and common practice. Therefore, one of 
the aims of PREPARED is to promote, to contribute and to exemplify how to 
systematically evaluate uncertainties in urban water systems. 
 
Assessing uncertainties is necessary: 
- to better quantify and to improve the quality of measurements; 
- to better contribute in modelling, by accounting for uncertainties in model 

structures, inputs, parameters and outputs; 
- to better help in decision making. 
 
This PREPARED deliverable includes: 
- an introduction to the two internationally recognized standards for assessment of 

measurement uncertainties (GUM Law of Propagation of uncertainties and the 
Monte Carlo method); 

- three examples of application, with various levels of complexity, showing in detail 
how to apply the above methods for uncertainty assessment. The examples deal 
with sewer systems, but they can be easily transposed to other components of 
urban water systems. 

- references to additional documents. 
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1. OBJECTIVES 
Assessing uncertainties is done systematically in almost all hard sciences research fields, and in more and more 
numerous engineering domains. In the field of urban water systems, this is still not a systematic and common 
practice. Therefore, one of the aims of PREPARED is to promote, to contribute and to exemplify how to 
systematically evaluate uncertainties in urban water systems. 

Assessing uncertainties is necessary: 
- to better quantify and to improve the quality of measurements; 
- to better contribute in modelling, by accounting for uncertainties in model structures, inputs, parameters and 

outputs; 
- to better help in decision making. 

The objectives of this deliverable are as follows: 
- to introducer the two internationally recognized standards for assessment of measurement uncertainties; 
- to provide examples of application. 

Many documents already exist: this deliverable will not replicate them, but cites and refers to them as much as 
necessary. 
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2. STANDARDS FOR ASSESSMENT OF UNCERTAINTIES IN MEASUREMENTS 
This chapter includes a short introduction, the necessary terminology, some general comments, and a brief 
presentation of the two main internationally accepted methodologies for uncertainty assessment (GUM and 
MCM). 

2.1 INTRODUCTION 
The measurement process is the act of assigning a value to some physical variable, by operating sensors and 
instruments in conjunction with data acquisition and reduction procedures. In an ideal measurement, the value 
assigned by the measurement would be the actual value of the physical variable intended to be measured. 
However, measurement process and environmental errors bring in uncertainty in the correctness of the value 
resulting from the measurement. To give some measure of confidence to the measured value, measurement 
errors must be identified, and their probable effect on the result estimated. Uncertainty is simply an interval 
estimate of possible set of values for the error in the reported results of a measurement. The process of 
systematically quantifying error estimates is known as uncertainty analysis. 

Monitoring of urban water processes should be governed by the ability of the measurements to achieve the 
specific objectives within the allowable uncertainties. Thus, measurement uncertainty assessment should be a 
key part of the entire monitoring program: description of the measurements, determination of error sources, 
estimation of uncertainties, and documentation of the results. Uncertainty considerations need to be integrated in 
all phases of the monitoring process, including planning, design, the decision whether to measure or not with 
specific instruments, and the carrying out of the measurements. In essence, this means that uncertainty must be 
considered even at the definition-of-objectives stage; the objectives should include a specification of the 
allowable uncertainty. 

Along with this philosophy, rigorous application or integration of uncertainty assessment methodology is an 
integral part of all monitoring phases. The most important benefits of standardised uncertainty analysis 
implementation are: 
- identification of the dominant sources of error, their effects on the result, and estimation of the associated 

uncertainties, 
- facilitation of meaningful and efficient communication of data quality, 
- facilitation of selecting the most appropriate and cost effective measurement devices and procedures for a 

given measurement, 
- consideration and reduction of the risks in decision making, and 
- evidence of compliance with regulations. 

2.2 TERMINOLOGY 
Terminology in metrology is very specific and confusion with usual or ancient wordings should be avoided. 
Some key definitions are provided hereafter. More details are given in the dedicated international standards and 
especially in the VIM - International Vocabulary of Metrology (JCGM, 2008, 2010). Additional and more 
specific definitions are also given in ISO (2008a, 2008b, 2009a, 2009b). 

- Measurand: quantity intended to be measured. 
- Uncertainty (VIM definition): non-negative parameter characterizing the dispersion of the quantity values 

being attributed to a measurand, based on the information used. This VIM definition remains very similar to 
the definition of the standard deviation. This is why the GUM (ISO, 2008a) provides a more specific 
definition, with three notes:  

- Uncertainty (GUM definition): parameter, associated with the result of a measurement, that characterizes 
the dispersion of the values that could reasonably be attributed to the measurand. 
- NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-

width of an interval having a stated level of confidence. 
- NOTE 2 Uncertainty of measurement comprises, in general, many components. Some of these 

components may be evaluated from the statistical distribution of the results of series of measurements 
and can be characterized by experimental standard deviations. The other components, which also can be 
characterized by standard deviations, are evaluated from assumed probability distributions based on 
experience or other information. 
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- NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the 
measurand, and that all components of uncertainty, including those arising from systematic effects, such 
as components associated with corrections and reference standards, contribute to the dispersion. 

- Measured quantity value: measured value of a quantity measured value, quantity value representing a 
measurement result. 

- True value or true quantity value: quantity value consistent with the definition of a quantity. A true value 
is usually unknown. 

- Measurement accuracy: closeness of agreement between a measured quantity value and a true quantity 
value of a measurand. (See also Figure 2.1). 

- Measurement trueness: closeness of agreement between the average of an infinite number of replicate 
measured quantity values and a reference quantity value. (See also Figure 2.1). 

- Measurement precision: closeness of agreement between indications or measured quantity values obtained 
by replicate measurements on the same or similar objects under specified conditions. 

- Measurement error: measured quantity value minus a reference quantity value. 
- Systematic measurement error: component of measurement error that in replicate measurements remains 

constant or varies in a predictable manner. 
- Measurement bias: estimate of a systematic measurement error. 
- Random measurement error: component of measurement error that in replicate measurements varies in an 

unpredictable manner. 
- Repeatability condition of measurement: condition of measurement, out of a set of conditions that includes 

the same measurement procedure, same operators, same measuring system, same operating conditions and 
same location, and replicate measurements on the same or similar objects over a short period of time. 

- Reproducibility condition of measurement: condition of measurement, out of a set of conditions that 
includes different locations, operators, measuring systems, and replicate measurements on the same or 
similar objects. 

- Measurement reproducibility: measurement precision under reproducibility conditions of measurement. 
- Standard measurement uncertainty: measurement uncertainty expressed as a standard deviation. 
- Combined standard measurement uncertainty: standard measurement uncertainty that is obtained using 

the individual standard measurement uncertainties associated with the input quantities in a measurement 
model. 

- Relative standard measurement uncertainty: standard measurement uncertainty divided by the absolute 
value of the measured quantity value. 

- Expanded measurement uncertainty: expanded uncertainty product of a combined standard measurement 
uncertainty and a factor larger than the number one. 

- Coverage interval: interval containing the set of true quantity values of a measurand with a stated 
probability, based on the information available. 

- Coverage probability: probability that the set of true quantity values of a measurand is contained within a 
specified coverage interval. 

- Coverage factor: number larger than one by which a combined standard measurement uncertainty is 
multiplied to obtain an expanded measurement uncertainty. 

- Measurement function: function of quantities, the value of which, when calculated using known quantity 
values for the input quantities in a measurement model, is a measured quantity value of the output quantity in 
the measurement model. 

- Influence quantity: quantity that, in a direct measurement, does not affect the quantity that is actually 
measured, but affects the relation between the indication and the measurement result. 

- Correction: compensation for an estimated systematic effect. 

Figure 2.1 illustrate some of the above definitions. 
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Figure 2.1: Illustration of measurement error concepts (AIAA, 1995) 

2.3 GENERAL COMMENTS ON UNCERTAINTY ANALYSIS AND BIAS 
The following paragraphs are adapted from Bertrand-Krajewski and Muste (2007). 

Uncertainty analysis (UA) is a rigorous methodology for estimating uncertainties in measurements and in the 
results calculated from them. It combines statistical and engineering concepts. The analysis must be done in a 
manner that can be systematically applied to each step in the data uncertainty assessment determination. 

Biases are usually very difficult to detect and remove. Sensor calibration with links to primary or secondary 
standards is a way to evaluate and remove (by correction) biases. However, sensor calibration qualifies the 
sensor itself, and not necessarily its use in a given location under given conditions which may themselves be the 
source of additional bias. This aspect should be accounted for as much as possible, as even relatively small 
biases may have dramatic effects on the final results from monitoring programmes (Fletcher and Deletic, 2007). 
If biases can be detected and assessed, they can be accounted for in the uncertainty assessment. In other cases, 
correct information on systematic errors is non-existent or very weak, and estimations are not possible. An 
alternative method in this case may be to simulate scenarios, i.e. to simulate the effects of possible systematic 
errors on the final results, in order to answer questions like “what if…” (e.g. how would the discharge and its 
uncertainty change if the water level sensor had a bias of + 2 cm?). In all cases, investigation to identify and 
remove possible biases, even if it is difficult, is a very important task to be carried out with the highest degree of 
rigour and intellectual honesty. 

Frequently, instrumentation errors are the only ones dealt with in estimating uncertainties. This is unfortunate, 
because in many situations errors such as those induced by flow-sensor interaction, flow characteristics, and 
measurement operation are frequently larger than the instrument errors. This is why, as much as possible, the 
location and conditions of use of sensors should be accounted for to evaluate the total resulting uncertainty. For 
example, a water level sensor may have an instrument uncertainty (evaluated by means of an adequate 
calibration with certified standards) of ± 1 mm. If this sensor is used in a sewer system where the water is not 
still and perfectly horizontal, but moves downstream and generates small waves at the surface with possible 
secondary currents, leading to a non-horizontal free surface, the final uncertainty may reach ± 1 cm or more (see 
examples in Chapter 3). Conceptual biases (i.e. errors that might stand between concept and measurement) are 
generated during the test design and data analysis through idealisations (assumptions) in the data interpretation 
equations, use of equations which are incomplete and do not acknowledge all the significant factors, or by not 
measuring the correct variable (Moffat, 1988). Despite the potential importance of conceptual biases, and the 
challenging in assigning significance to what has been measured, this category of uncertainty is beyond the 
scope of this deliverable and will not be further discussed. 

2.4 INTERNATIONAL STANDARDS FOR ASSESSING UNCERTAINTY IN MEASUREMENTS 
The first internationally unified frame for UA in measurements was the GUM – Guide for Uncertainty in 
Measurements, published in 1993 (GUM, 1993), re-published with some revisions in 1995 and also as a 
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European standard in 1999 (ENV 13005, 1999). GUM is based on statistical methods. Since its publication, it 
has been revised, adapted and completed as parts of a new Guide for Uncertainty in Measurement (abbreviated 
as the Guide) elaborated at international level by the JCGM – Joint Committee for Guides in Metrology 
convened by the Bureau International des Poids et Mesures (BIPM), the International Electrotechnical 
Commission (IEC), the International Organization for Standardization (ISO), and the International Organization 
of Legal Metrology (OIML). The Supplement 1 published in 2008 introduces the Monte Carlo method for 
uncertainty assessment.  

In this document, we will refer to the following parts of the Guide: 

 As the global introduction for all concepts and methods: 
ISO (2009a). ISO/IEC Guide 98-1:2009(E) Uncertainty of measurement – Part 1: Introduction to the 
expression of the uncertainty in measurement. Geneva (Switzerland): ISO, September 2009, 32 p. 

 As Guide for uncertainty in measurements method (abbreviated as GUM in this deliverable): 
ISO (2008a). ISO/IEC Guide 98-3:2008(E) Uncertainty of measurement - Part 3: Guide to the 
expression of uncertainty in measurement (GUM: 1995). Geneva (Switzerland): ISO, December 2008, 
130 p. 

 As Monte Carlo method (abbreviated as MCM in this deliverable): 
ISO (2008b). ISO/IEC Guide 98-3/Suppl.1:2008(E) Uncertainty of measurement - Part 3: Guide to the 
expression of uncertainty in measurement (GUM: 1995) Supplement 1: Propagation of distributions 
using a Monte Carlo method. Geneva (Switzerland): ISO, December 2008, 98 p. 
ISO (2009b). ISO/IEC Guide 98-3/S1/AC1:2009(E) Uncertainty of measurement - Part 3: Guide to the 
expression of uncertainty in measurement (GUM: 1995), Supplement 1: Propagation of distributions 
using a Monte Carlo method, Technical corrigendum 1. Geneva (Switzerland): ISO, May 2009, 2 p. 

GUM and MCM are also referred to as the “propagation of uncertainties” method and the “propagation of 
distributions” method, respectively. 

This deliverable cannot reproduce the full content of the above detailed standards: a brief introduction is 
presented below, and examples are given in Chapters 3 to 5. It is the responsibility of the reader, when 
estimating uncertainties in measurements, to get an original version of the above standards and to apply the 
methods. For the PREPARED project, the authors of this deliverable may assist the user in case some difficulties 
occur in applying the methods. 

The following sections are adapted from Muste et al. (2011). 

2.4.1 GUM method 
The GUM implementation entails the following steps: 

Define the measurement process. A mathematical relationship of the measurement relates the measurand and 
input quantities. The measurement process has to provide an estimate (measurement) of each input quantity and 
the influence quantities involved in the measurement process.  

Evaluate the standard uncertainty of each input estimate )( ixu . Standard uncertainties can be evaluated using 
statistical methods (Type A) or other methods (Type B). 

Type A evaluation. The standard uncertainty )( ixu of an input quantity iX determined from n independent 

repeated observations is )()( ii Xsxu = , calculated as follows: 

n
xsXs ik

i
)()(

2
2 =  eq. 1

where 

∑
=

−
−

=
n

k
iikik xx

n
xs

1

22 )(
1

1)(  eq. 2

∑
=

=
n

k
iki x

n
x

1

1  eq. 3



Evaluatio

© PREPA

The varia
ikx  obtai

distinguis
measurem
of curren
is often m
from a sm

Type B e
series of 
measurem
ensure si
probabilit

Type B s
distributio
input esti
generally
for which
of rectan
error due
normal pr
level (or 
only info
assumed 
symmetri
the asymm

Add unc
irrespecti
combinat

=ixu 2)(

where u(

Determin
with the N

( 1xfy =

on of uncertain

ARED  

able Xi is a ran
ined under th
shed [small 
ment sample a
nt measuremen
made that the 
mall number o

evaluation. Ty
f observations
ment are avai
imilar confide
ty distribution

standard uncer
on. The dispe
imate ix , as 

y acceptable to
h the standard
ngular probabi
e to limited re
robability dist
coverage fact

ormation avail
to lie. In som

ical with resp
metric distribu

Figure 2.2: P

certainty comp
ive of their 
tion using:  

∑
=

K

j
jixu

1

2)(  

jix )( is the j-th

ne the estimat
N determined 

),..., 2 Nxx  

nties in measu

  

ndom variable
he same meas
measurement 

and knowledg
nts (recommen
distribution b

of values, the c

ype B evaluat
s. This evalu
ilable. Conseq
ence levels as
n associated w

rtainty is base
ersion ia  is t
defined in F

o assign well-d
d uncertainty c
ility distributi
esolution of a
tribution can 
tor) with the e
lable about a q
me measurem
ect to the bes
ution would b

Probability dist

ponents for 
provenance a

h standard unc

ted results. U
input quantiti

rements – Re

e subjected to
surement cond

sample and
ge from severa
nded)]. In Typ
best describin
corresponding

tions are thos
uation type is
quently, previ
s those obtain

with the uncert

ed on the exp
the estimated 

Figure 2.2. Th
defined geom
can be obtaine
ions include (
an instrument
also be used i

expanded unce
quantity is the

ment situation
t estimate due

be appropriate 

tributions used

each input v
and type (A 

certainty asso

Use the measu
ies ix : 

eport n° 2011-0

8 

o n independen
ditions. Based

d knowledge 
al sets of prev
pe A evaluati

ng the quantity
g distribution c

se carried out 
s necessary w
ious knowled
ned for Type 
tainty and the 

pected dispersi
semi-range o

he probability
metric shapes (i

ed from a sing
(ISO, 2005): 
t’s display or 
in association
ertainty. The t
e maximum b

ns, the upper 
e to, for exam
for estimating

d to estimate T

variable. The 
or B), are 

ociated with th

urement funct

021 

nt observation
d on the avai

from one se
vious observat
ons of measu
y is Gaussian
can be taken a

by means ot
when no cur
dge is require

A evaluation
associated de

ion of measur
of a compone
y distribution 
i.e., rectangul
gle calculation
maximum in
digitizer; and

n with calibrat
triangular prob
bounds within
and lower bo

mple, a drift in
g the standard

Type B uncert

various sour
compounded

he variable ix

ion f to calcu

  

ns (large numb
lable data, se
et of previou
tions, and larg
rement uncert
. When uncer
as a t-distribut

ther than the 
rent measure

ed. As Type B
ns, they requi
gree of freedo

rements and th
nt of uncertai
can take a v
ar, Gaussian, 
n (see Figure 

nstrument drif
d manufacture
tion certificate
bability distrib

n which all va
ounds for an 
n the instrume
d uncertainty. 

tainties (Muste

rces of uncer
d using the r

. 

ulate the meas

22 Au

ber, i.e., more
everal situatio
us observatio
ge measureme
tainties, the a
rtainties are d
tion. 

statistical ana
ements or on
B assessment
ire a knowled
om. 

the assumed p
inty associate

variety of form
triangular, asy
2.2). Typical

ft between ca
ers’ tolerance
es quoting a c
bution is used

alues of the qu
input quantit

ent. For such 

 
e et al., 2011) 

rtainties for a
root-sum-squa

surand y in co

gust 2011 

e than 30), 
ons can be 
ons, small 
ent sample 
ssumption 

determined 

alysis of a 
ne (single) 
ts have to 
dge of the 

probability 
ed with an 
ms, but is 
ymmetric) 
examples 

alibrations; 
e limits. A 
confidence 
d when the 
uantity are 
ty are not 
situations, 

a variable, 
are (RSS) 

eq. 4

onjunction 

eq. 5



Evaluation of uncertainties in measurements – Report n° 2011-021 

© PREPARED     9     22 August 2011 

Determine the combined standard uncertainty )(yuc . The combined standard uncertainty is obtained using the 
following equation, frequently referred to as the LPU - Law of Propagation of Uncertainties: 
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where f is the measurement function and each standard uncertainty )( ixu  is estimated using either the Type A or 
B evaluation, or both. ix  and jx  are estimates of iX  and jX

,
 and ),(),( ijji xxuxxu =  is the estimated 

covariance associated with ix  and jx : 

)()(),(),( jijiji xuxuxxrxxu =  eq. 7

where r(xi, xj) is the correlation coefficient of xi and xj. 
N is the number of input variables. 

The partial derivatives, as called sensitivity coefficients ci, are evaluated at ii xX = using: 

i
i X

fc
∂
∂

=  eq. 8

In case f has a very complicated analytical expression, its derivative may be difficult to establish analytically. It 
can be replaced by a numerical second order approximation: 

ε
ε−−ε+

≈
2

)()( ii
i

xfxfc  eq. 9

where ε is very small compared to xi (typically, one can use ε = xi /1000). 

Determine the expanded uncertainty, using 

)(ykuU c=  eq. 10

where k is the coverage factor. 

Ideally, uncertainty estimates are based upon reliable Type B and Type A evaluations with a sufficient number 
of observations such that using a coverage factor of k = 2 will ensure a confidence level close to 95 %. If any of 
these assumptions is not valid, the effective degree of freedom νeff needs to be estimated using the Welch-
Satterthwhaite formula 
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and ci is the sensitivity coefficient. 

In case only a few observations are available, the value of k should be larger than 2 to estimate a 95 % 
confidence level, by replacing k by the Student t value which depends on the degrees of freedom (see application 
in Example 1, paragraph 3.2.1). 

Report the results together with the combined and expanded uncertainty. The result of a measurement is 
expressed as: 

)(ykuyUyY c±=±=  eq. 13

which is interpreted as the best estimate of the value attributable to the measurand Y, with Uy −  to Uy +  an 
interval that may be expected to encompass a large fraction of the distribution of values that could reasonably be 
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all necessary information. If PDFs are not Gaussian, the problem may be more complex and specific statistical 
methods shall be applied, which can be found in the scientific literature (e.g. Gentle, 2004). Once the M values 
of the measurand are calculated, one calculates then the mean value y  and its empirical coverage interval [ylow, 
yhigh] determined from the percentiles of the PDF of the calculated measurand. One uses typically a 95% 
coverage interval. 

The implementation steps of MCM are: 

Select the number of trials M to be made (a value of M = 106 can often be expected to deliver approximately 
95 % coverage interval for the output quantity, such that this length is correct to one or two significant decimal 
digits). As there is no guarantee that M = 106 or any specific pre-assigned number will suffice, an adaptive 
MCM (which selects M adaptively as the trials progress until various results of interest have stabilized in a 
statistical sense) is described in the Guide. 

Sampling from probability distributions and evaluation of the model 

N vectors with values xij of size M (j = 1:M) are drawn from the PDFs )( iigx ξ  for the N input quantities Xi. 
The N vectors maybe independent, partly or fully correlated depending on the appropriate assumptions. The 
measurand is then evaluated for each of the M draws from the PDFs for the N input quantities by using the 
measurement function (eq. 5). Draws are as x1, . . . , xN  where the j-th draw xj contains x1j, . . . , xNj, and xij 
being a draw from the PDF for Xi. The measurand estimates yj are: 

),...,( 21 Njjjj xxxfy =  for j=1:M eq. 14

Figure 2.4 graphically depicts both MCM and GUM methods for N = 3 independent input quantities Xi. On the 
left graph, the )( iigx ξ i= 1, 2, 3, are Gaussian, triangular, and Gaussian, respectively, and the output PDF 

)(ηYg is asymmetric. The asymmetric distribution can be associated with non-linear models or asymmetric
)( iigx ξ . 

Sort model values into strictly increasing order, using the sorted model values to provide G, a discrete 
representation of the distribution function )(ηYG for the output quantity Y. 

Estimate the mean of the output quantity y of Y. In addition, the associated standard uncertainty u(y) can be 
estimated as equal to the estimated standard deviation s(y) by using appropriate statistical methods. 

Estimate an appropriate coverage interval for Y, for a stipulated coverage probability p, by applying the 
adaptive Monte Carlo procedure if necessary to provide (approximations to) the endpoints ylow and yhigh of the 
required (probabilistically symmetric or shortest) 100 p % coverage interval for the output quantity. A numerical 
result is deemed to be stabilized if twice the standard deviation associated with it is less than the targeted 
numerical tolerance, associated with the standard uncertainty u(y) as described. 

The conditions for MCM application are (ISO, 2008, Chapter 5.10.1): 
- f is continuous with respect to all Xi –s in the neighbourhood of the best estimates xi of the Xi. 
- the PDF for Y is: 

- continuous over the interval for which this PDF is strictly positive, 
- unimodal (single-peaked), and 
- strictly increasing (or zero) to the left of the mode and strictly decreasing (or zero) to the right of the 

mode. 
- A sufficiently large value for M is used. 

The MC method is summarised in Figure 2.4. 
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3. EXAMPLE 1: APPLICATION OF TYPE B AND MONTE CARLO METHODS 
FOR UA IN CASE OF DISCHARGE AND VOLUME MEASUREMENTS IN A 
CIRCULAR SEWER PIPE 

3.1 INTRODUCTION 
In this example, the uncertainty in the discharge and volume measured in a circular sewer pipe is calculated by 
means of two methods: i) the GUM type B method by application of the law of propagation of uncertainties LPU 
(ISO, 2009a) and ii) the Monte Carlo method (ISO, 2008, 2009b). For pedagogical reasons, most algebra and 
calculations are presented in detail. This example is copied, with minor modifications, from Bertrand-Krajewski 
(2011). 

3.2 DISCHARGE MEASUREMENT 
Let consider a circular concrete sewer pipe with radius R = 0.5. It is assumed i) that the pipe is circular and not 
affected by any deformation, and ii) that there are no deposits on the invert. 

The discharge Q (m3/s) is then given by  

( ) U
R
h

R
h

R
hRUhSUhRQ

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −==

2
2 1111Arccos)(,,  eq. 15

where h (m) is the water level and U (m/s) the mean flow velocity. 

Calculations have been made with the following values: 

R = 0.5 m, u(R) = 0.001 m 

h = 0.7 m, u(h) = 0.005 m 

U = 0.8 m/s, u(U) = 0.05 m/s. 

Paragraph 3.4.1 explains how the standard uncertainties u(R), u(h) and u(U) have been estimated. 

The resulting discharge Q = 0.4697 m3/s. Note here that all results in the paper will be given with 4 or more 
digits only for illustration and comparison purposes. Under real conditions of application, one, two or three 
digits would be sufficient: the additional ones appear in italic characters in numerical values. However, it is of 
course recommended to keep the maximum number of digits in all intermediate calculations. 

3.2.1 Type B method 

All measured variables R, h and U are measured independently with different instruments and are not correlated. 
The effective degrees of freedom for the measurand are obtained using eq. 11, using the corresponding degrees 
of freedom for each variable (i.e. ) and ,59 ,3 ∞=== UhR vvv . The resulting effective degree of freedom 
for the measurand is 70256, a large value that for practical purposes can be considered an infinite value. 
Consequently, the law of propagation of uncertainty (LPU) can be written 

2
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The partial derivatives and their numerical values are equal to 

2221Arccos2 hhRU
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∂ = 0.733 212 111 192 m2/s eq. 18
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22 2)(1Arccos hhRhR
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⎠
⎞

⎜
⎝
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∂
∂ = 0.587 229 807 114 m2 eq. 19

In case algebra is considered too difficult, the above exact analytical expressions can be replaced by numerical 
estimations of partial derivatives by applying a second order approximation operator (several digits are given 
only for comparison between exact and approximated values): 
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eq. 22

It is important to note that δx values should be chosen in such a way that δx << u(x). 

Eq. 2 gives 

u(Q)2 = 7.2699.10-7 + 1.3440.10-5 + 8.6209.10-4 = 8.7626.10-4 m6/s2  eq. 23

and then the standard uncertainty u(Q) = 0.0296 m3/s ≈ 0.03 m3/s. 

With the enlargement factor ke = 2, Q ± ke.u(Q) = 0.4697 ± 0.0592 m3/s. 

i.e. a relative enlarged uncertainty 126.0
4697.0
0593.0)(

==
Q

Quke  = 12.6 %. 

This can be interpreted as the true value Q has an approximately 95 % probability to lie in the interval 
[Q - keu(Q), Q + keu(Q)] = [0.4106, 0.5289] ≈ [0.41, 0.53]. 

Under real conditions, one would use Q = 0.47 ± 0.06 m3/s. 

One should note that, in eq. 23, the first term (7.26.10-7) is negligible compared to the two other ones: the 
contribution of the uncertainty in R to the total uncertainty in Q can be ignored. In addition, the contribution of 
the uncertainty in h is lower than the contribution of the uncertainty in U. However, this conclusion is not valid 
for all possible values of R, h and U: a specific analysis can be made for each particular set of values (R, h, U). 

3.2.2 Monte Carlo method 
For this example, N = 106 simulations are run. Details of calculation are given in Appendix 3.4.5. 

The following samples are created: 

N values of R normally distributed with mean value 5.0=R m and standard deviation s(R) = 0.001 m. 

N values of h normally distributed with mean value 7.0=h m and standard deviation s(h) = 0.005 m. 

N values of U normally distributed with mean value 8.0=U m/s and standard deviation s(U) = 0.05 m/s. 

All samples are independent and not correlated. The histogram of the water level sample is shown in Figure 3.1. 
The coefficients of correlation between the three samples are given in Table 3.1: the samples are clearly not 
correlated. 
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Figure 3.1: Histogram of the water level sample (one million values of h) 

 
Table 3.1: Coefficients of correlation between the samples of the three variables R (m), h (m) and U (m/s) 

 R h U 
R 1 -0.0004 -0.0009 
h  1 +0.0005 
U   1 
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Figure 3.2: Histogram of the discharge sample (one million values of Q) 
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Figure 3.3: Width of the 95% coverage interval vs. the lower percentile of the coverage interval 

The histogram of the resulting N values of discharge Q is shown in Figure 3.2. The mean value Q is equal to 
0.4698 m3/s. 

The variation of the width of the 95% coverage interval is represented in Figure 3.3. The shortest 95% coverage 
interval is [0.4119, 0.5279] ≈ [0.41, 0.53]. In this simple case, the shortest 95 % coverage interval is equivalent 
to the traditional symmetrical 95 % confidence interval, but it may be different in other cases. 

Simulations with other samples of the same size N = 106 give slightly different values. This is illustrated in 
Table 3.2 with 10 uncertainty evaluations. The standard deviation in the bottom line reveals that the dispersion of 
the results is very small and, in this case, negligible. 

 
Table 3.2: Ten Monte Carlo uncertainty assessments (UA) with N = 106 

UA # Q (m3/s) shortest 95 % CI 

1 0.4698 0.4115 0.5275 
2 0.4698 0.4112 0.5273 
3 0.4698 0.4118 0.5277 
4 0.4698 0.4122 0.5283 
5 0.4698 0.4118 0.5279 
6 0.4698 0.4116 0.5275 
7 0.4698 0.4118 0.5278 
8 0.4698 0.4120 0.5278 
9 0.4697 0.4114 0.5276 

10 0.4698 0.4125 0.5284 
Mean value 0.4698 0.4118 0.5278 

Standard deviation 0.0000 0.0004 0.0003 

3.2.3 Comparison 
The type B method gives Q = 0.4698 m3/s and the 95 % confidence interval is [0.4106, 0.5289] with ke = 2. 

The Monte Carlo method gives Q = 0.4698 m3/s and the shortest 95 % coverage interval is [0.4119, 0.5279]. 

When considering only 2 digits as normally applied in practice, both results are considered similar. 
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If ke = 1.96 is used instead of ke = 2 (resp. a 95 % confidence interval instead of a 95.5 % confidence interval in 
case of a normal distribution), the type B interval becomes [0.4117, 0.5278] which is closer to the Monte Carlo 
shortest 95 % coverage interval. 

Considering the Monte Carlo method as the reference method, one may conclude that, in this case, the type B 
method is validated and can be applied routinely, e.g. to discharge time series. The type B method requires 
preliminary algebra compared to the Monte Carlo method but, if it is validated, it runs faster than the Monte 
Carlo method when applied for example to time series. However, for single uncertainty assessment, the Monte 
Carlo method may be faster. 

3.3 VOLUME MEASUREMENT 
The second example deals with the estimation of the uncertainty in the volume calculated from discharge 
measurements. Let consider the volume V(T) corresponding to the volume cumulated at time T over a duration 
θ 1: V(T) is the integral of the discharge Q(t) from time T-θ to time T: 

∫
=

θ−=

=
Tt

Tt
dttQTV )()(  eq. 24

In practice, Q(t) is not measured continuously but with a discrete time step Δt. In addition, the true values of Q(t) 
are not known: they are estimated by the discrete measured values q(jΔt). The true volume V(T) is then estimated 
approximately by the discrete sum Ve(T): 

( )( )∑
=

ΔΔ−−−=
n

j
e ttjnTqTV

1
)1()(  eq. 25

with n the number of time steps Δt for the duration θ = nΔt and j the time index. 

Assuming that the uncertainty in the value of Δt is negligible, two main sources of uncertainty affect the estimate 
Ve(T): i) uncertainties in the measured values q(jΔt), which are estimated e.g. as shown in section 3.2 above, 
ii) uncertainties due to the discretisation of the true continuous signal Q(t), which will be analysed hereafter. 
Uncertainties due to the discretisation have themselves two sources: i) the fact that the starting time of the 
measurement duration θ is arbitrarily, i.e. randomly, decided among all possible starting times uniformly 
distributed within the first time step Δt, ii) the fact that the exact integral of the continuous signal is replaced by a 
numerical sum of a limited number of discrete values. 

Let re-write the discrete times as follows: 

tj = T+ t0- (n - j + 1) Δt eq. 26

t0 is the time of the first discrete measurement of the discharge. It is considered as a random variable within the 
first time step window [T - nΔt, T - (n - 1)Δt]. Once t0 is chosen, all subsequent discrete times tj are determined 
by eq. 26. 

The measured discharge q(tj) can be written: 

)()()( jjj tetQtq +=  eq. 27

with Q(tj) the true value of the discharge Q and e the error (i.e. the difference between the true but unknown 
value Q and the measured value q) at time tj. The variance of q(tj) is equal to the variance of e(tj) as Q(tj) is the 
true value. Consequently, 

( ) ( ) ( ))(var)()( 22
jjj teteutqu ==  eq. 28

                                                           
1 If the duration θ start at t = 0, then V(T) is the integral from t = 0 to T = θ. As, in many cases, θ may not 
necessarily coincide with 0 (zero), especially in case of e.g. successive storm events, we have adopted the more 
generic (but a little more complex notation) from T-θ to T. 
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eq. 27and the algebra presented in section 3.3.1 hereafter are a simplified re-writing of a more detailed approach 
presented in Joannis and Bertrand-Krajewski (2009). 

In order to illustrate the application of the above concepts and equations, true values of Q(t) and V(T) are 
necessary. That is the reason why a fictitious reference hydrograph Q(t) has been created as the true value of a 
discharge time series (Figure 3.4). It corresponds to a 24 hour hydrograph at the outlet of a combined sewer 
system from 00:00 to 23:59 (1440 minutes) with a storm event occurring during the night between 04:00 and 
06:00 (minutes 240 to 360). The hydrograph is the sum of constant and sinus continuous functions, allowing 
calculating the exact true value of the volume V(T) in 24 hours, equal to 3000 m3. The uncertainty in estimates 
Ve(T) will be evaluated by both the type B approach and Monte Carlo simulations. 

 
Figure 3.4: Fictitious 24 hour reference hydrograph 

3.3.1 Type B method 
Let define 
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=Δ  eq. 29

ΔQ(tj) is the distance between each true discharge value Q(tj) and the true mean discharge, in the interval [T-θ, 
T]. Each discharge value is considered here as an approximation of the mean value: this allows distributing the 
error in the estimate Ve(T) equally for each time tj. This hypothesis, combined with eq. 26 and eq. 27, leads to 
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)()()()(  eq. 30

With the hypothesis that Δt has a negligible uncertainty, it is convenient to re-write the above equation as 
follows: 
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Then, accounting for the fact that V(T) is the true value of the volume and consequently has no uncertainty, the 
LPU applied by accounting for all covariances leads to 
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 eq. 32

According to eq. 28, u(e(tj)) = u(q(tj)). 

According to eq. 29, ( ) ( ))()( jj tQutQu =Δ  and ( ) ( ))(),()(),( kjkj tQtQutQtQu =ΔΔ  as V(T) is a true value. If tj 
and tk are known, Q(tj) and Q(tk) are also known and have no uncertainty. They can be considered as random 
variables only if tj and tk are random variables. If the time step Δt is fixed, the possible variations of the j-th 
measurement q(tj) used in eq. 25 correspond to uniformly distributed variations of tj in the time step interval [(T–
n–j-1)Δt, (T-n-j)Δt]. In practice, all values of tj are fixed if t0 is given (eq. 26). Consequently, the possible 
variations of q(tj) are only due the variations of t0, which is the key variable when considering uncertainties due 

to discretisation. ( )2)( jtQu  and ( ))(),( kj tQtQu  are thus respectively the variance and covariance of the 

discharge values when t0 is randomly chosen in a time interval of length equal to Δt. In practice, the continuous 
true discharge Q is not known: only discrete measured values q are available. A model is then necessary to 
interpolate between discrete values q to re-build a virtual continuous signal. It is important to note that the 
covariance ( ))(),( kj tQtQu  is not the covariance between successive values Q(tj), Q(tj +Δt), Q(tj +2Δt), etc., but 
the covariance of the values of Q(tj) when tj is varying within the j-th time step when t0 is chosen randomly to 
start a measurement period. 

Considering lastly that i) there is no covariance between ΔQ and e (measurement errors are not correlated with 
discretisation errors) and ii) there is no covariance between measurement errors (only random errors are 
considered, systematic errors have been corrected), eq. 32 can be simplified and re-written as follows: 

( ) ( ) ( )

)C()B()A(

))(),((2)()()(
1

1 11

2

1

222
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
ΔΔ+Δ+Δ= ∑ ∑∑∑

−

= +===

n

j

n

jk
kj

n

j
j

n

j
je tQtQutQutqutTVu

 eq. 33

To simulate a real measurement process, discrete hydrographs have been generated. An example is shown in 
Figure 3.5 with Δt = 30 min and random errors e(tj) sampled from normal distributions with mean values equal 
to zero and standard deviations equal to 7.5 % of the true values Q(tj), i.e. u(q(tj)) = 0.075×Q(tj). Δt is large (30 
min) only to facilitate the legibility of Figure 3.5. Ve(T) is equal to 2967 m3. 
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Figure 3.5: Example of discrete measurements with Δt = 30 min and relative standard uncertainties 

in q values equal to 0.075×q. For comparison, the true signal is represented by the dashed line 

eq. 33 contains 3 terms: 

- A corresponds to the random errors in measurements: A = 1541 m6. 

- B corresponds to the variances linked to the discretisation: B = 15409 m6. 

- C corresponds to the covariances linked to the discretisation: C = -7291 m6. 

The total uncertainty in Ve(T) is then given by ( ) CBATVu e ++=)( = 98 m3. With an enlargement factor 
ke = 2, Ve(T) ± ke u(Ve(T)) = 2967 ± 196 m3. The corresponding interval is [2771; 3163]. 

The contribution of the discretisation to the total uncertainty is equal to (B+C)/(A+B+C) = 84 % of the total 
uncertainty, while the contribution of random errors is only 16 %. 

3.3.2 Monte Carlo estimation 
Monte Carlo simulations have been run in order to illustrate a more detailed analysis of the uncertainty in Ve(T). 
The first step will consider only discretisation. The second step will consider both discretisation and 
measurement uncertainties as sources of uncertainty in Ve(T). 

3.3.2.1 Effect of discretisation 

This step aims to answer the following question: how discretisation of the true hydrograph Q(t) with a time step 
Δt may affect the estimate Ve(T)? Measured values q(tj) are considered with no uncertainties. 

Fourteen time steps (s = 1:14) have been analysed, respectively equal to 1, 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 
180, 240 and 360 minutes. Long-time steps have been tested only for illustration purposes as such high values 
are not realistic for discharge measurements. For each value Δts, the starting time t0 is randomly set within the 
first time step [0, Δts]. One million (N = 106) simulations of t0 have been generated by 

sisi tt Δα=0  eq. 34

with αi a random number between 0 and 1 and i the Monte Carlo simulation index i = 1:N. 

As a result, N values of Ve(T) are calculated for each time step Δts : 
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with ms the number of measured discrete values for each time step Δts  

s
s t

m
Δ

=
1440  eq. 36

Results are given in Figure 3.6. On each box plot, the central horizontal line indicates the median value, the 
central box is delimited by the first (bottom) and third (top) quartiles, and the extremities of the dashed lines 
represent the minimum (bottom) and maximum (top) values. Mean values, standard deviations and shortest 95 % 
coverage intervals are given in Table 3.3. All mean values are equal to 3000 m3. 

For all time steps from 1 to 20 minutes, the discretisation has a negligible effect: V(T) is always precisely 
estimated by Ve(T). For time steps ranging from 30 to 60 minutes, a significant dispersion of the values is 
observed. For example, for Δt = 45 min, the mean is equal to 3000 m3, the median is equal to 2976 m3, but 
extreme values are respectively 2767 et 3273 m3, i.e. -7.8 % and +9.1 % compared to the mean. In practice, this 
level of precision is acceptable. For time steps greater than 60 min, the dispersion increases dramatically and 
becomes more asymmetrical. For Δt = 240 min, the median is equal to 2532 m3 (-15.6 %) and extreme values 
are respectively 2399 m3 (-20.0 %) and 5718 m3 (+90.6 %). 

 
Figure 3.6: Effect of discretisation on the estimate Ve(T) 

3.3.2.2 Effect of discretisation and random errors 

In this second step, the discrete measured values are no longer considered as true values but are affected by 
random errors e(tj) sampled from normal distributions with mean values equal to zero and standard deviations 
equal to 7.5 % of the true values Q(tj), i.e. u(q(tj)) = 0.075×Q(tj), as in section 3.3.1. Consequently, one 
calculates 
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with esik the random error for ( )ssisik tktQQ Δ−+= )1(0 . 

Five millions (N = 5×106) simulations have been run to ensure stable boundaries of the 95 % coverage intervals 
for all values of Δt. Results are shown in Figure 3.7. Mean values, standard deviations and shortest 95 % 
coverage intervals of Ve(T) are given in Table 3.3. 

Compared to the previous step (discretisation only), standard deviations slightly increase due to random errors in 
measured values. For time steps of less than 20 min, uncertainty due to discretisation is either negligible or very 
low and the uncertainty due to random errors is the most important contribution to the uncertainty in Ve(T). 
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However, the 95 % coverage intervals are very narrow (maximum ±2 % of the mean value). For time steps equal 
to or greater than 30 min, the discretisation is the most important source of uncertainty in Ve(T). When the time 
step increases, ms decreases and the contribution of random errors in a decreasing number of measured values 
increases in absolute value. But this increasing contribution to the total uncertainty in Ve(T) increases less 
rapidly, relatively, than the contribution due to the discretisation. 

In Table 3.3 column E, the line corresponding to Δt = 30 min indicates that u(Ve(T)) = 99 m3. This value is 
similar to the standard uncertainty of 98 m3 calculated by means of the type B approach in section 3.3.1. The 
95 % coverage interval in column F is [2827; 3170], to be compared with is [2771; 3163] obtained in section 
3.3.1: both intervals can be considered equivalent (difference in lower and upper boundaries are resp. -2 % and -
0.2 % with the interval in column F as the reference interval). However, it appears that 95 % confidence intervals 
calculated with the type B approach and the 95 % coverage intervals calculated with MC simulations will no 
longer be equivalent when Δt increases, because of the asymmetrical distribution of Ve(T). In this case, MC 
simulations are a better and less biased approach. 

The MC method illustrated in this section for the calculation of a cumulated volume will be further developed 
for a more critical issue: the calculation of pollutant loads when discrete samples are taken in sewer systems for 
laboratory analyses. Discrete sampling strategies will be compared to on line continuous measurements (e.g. 
turbidity) collected with short time steps (e.g. 2 minutes): in this case, on line water quality time series will be 
considered as the true reference signal and uncertainties due to both discrete sampling and laboratory analyses 
will be assessed. 

 
Figure 3.7: Effect of both discretisation and random errors on the estimate Ve(T) 

 
Table 3.3: Standard uncertainties in Ve(T) for two cases: i) with discretisation only (columns A to C), 

ii) with both discretisation and random errors (columns D to F) 
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Δt 
(min) 

discretisation only discretisation + random errors 
(A) 

mean 
Ve(T) 
(m3) 

(B) 
u(Ve(T)) 

(m3) 

(C) 
95 % 

coverage 
interval 

(D) 
mean 
Ve(T) 
(m3) 

(E) 
u(Ve(T)) 

(m3) 

(F) 
95 % 

coverage 
interval 

1 3000 < 10-10 [3000; 3000] 3000 7.6 [2985; 3015] 
2 3000 < 10-10 [3000; 3000] 3000 10.7 [2979; 3021] 
5 3000 < 10-10 [3000; 3000] 3000 17 [2967; 3033] 

10 3000 < 10-10 [3000; 3000] 3000 24 [2953; 3047] 
15 3000 6 [2993; 3009] 3000 30 [2941; 3059] 
20 3000 < 10-10 [3000; 3000] 3000 34 [2933; 3066] 
30 3000 90 [2867; 3120] 3000 99 [2827; 3170] 
45 3000 178 [2767; 3269] 3000 185 [2723; 3317] 
60 2999 154 [2833; 3292] 3000 165 [2767; 3338] 
90 3000 350 [2534; 3646] 3000 357 [2456; 3672] 

120 3000 494 [2500; 3993] 3000 501 [2388; 3999] 
180 3000 721 [2427; 4621] 3000 728 [2277; 4606] 
240 2999 904 [2399; 5205] 3000 911 [2208; 5192] 
360 3000 1082 [2360; 5533] 3000 1092 [2143; 5569] 

 

3.4 APPENDIX TO EXAMPLE 1 

3.4.1 Estimation of standard uncertainties in R, h and U 
Note: the calculations presented in this section are only given as additional information in order to illustrate how 
various approaches can be used in uncertainty assessment. Other and/or improved approaches can also be 
applied. 

3.4.2 Uncertainty in R 
As it is easier in practice to measure the pipe diameter, the pipe radius R has been calculated from n = 4 
measurements of the diameter D carried out at various positions in the pipe cross section, as given in Table 3.4. 

 
Table 3.4: Four measurements of the pipe diameter 

D (mm) 
1002 
1000 
997 
1002 

 

The mean value D  ≈ 1000.25 mm and thus the mean radius R = D /2 = 500.125 ≈ 500 mm. The standard 
deviation s of the four values of D is equal to 2.3629 mm. The 95 % confidence interval (with α = 0.05) for the 
mean value D  is given by 

n
stDD

n
stD )()( 2/12/1 νν αα −− +≤≤−  eq. 38

where t is the Student value for ν = n-1 = 3 degrees of freedom: t = 3.1824. 

Assuming that the above 95 % confidence interval can be re-written 

)(2)(2 DuDDDuD +≤≤−  eq. 39
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the standard uncertainty u(D) is determined by 
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stDu να  = 1.8799 mm ≈ 2 mm. eq. 40

Then u(R) = u( D )/2 = 0.9399 mm ≈ 1 mm. 

For calculations in this paper, one uses R = 0.5 m and u(R) = 0.001 m. 

3.4.3 Uncertainty in h 
The water level h has been measured with a 0-2 m piezoresistive sensor. The sensor was previously calibrated in 
the laboratory. Details are presented in Bertrand-Krajewski and Muste (2007): only key results are given in this 
appendix. Reference water levels have been measured in a Perspex column (height 3.5 m, diameter 0.2 m) with a 
class II certified 4 m long metallic meter, with a standard uncertainty less than 0.5 mm. For each reference water 
level, considered as a standard value, 12 repeated measurements have been made with the piezoresistive sensor. 
The data are given in Table 3.5. 

 
Table 3.5: Piezoresistive sensor calibration data. xi = reference value, yik = repeated measurements with 

k = 1:12, yi mean and si = respectively mean value and standard deviation of the 12 yik values. All values in mm 

 
 

Ordinary least squares regressions have been made and compared by means of F-tests. The resulting optimal 
calibration function, with a residual variance sl2 = 0.344398, is 

x00039508854bxay .15.0 +=+=  eq. 41

It is then possible to transform any measured value y0 into the corresponding most likely true value of the water 
level x0, and also to evaluate its standard uncertainty u(x0). Consider one single measured value y0 = 701 mm. 
The most likely true value x0 is calculated with eq. 42: 
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The standard deviation s(x0) is due to two independent contributions: i) the uncertainty in the measured value y0, 
and ii) the uncertainty in the calibration curve expressed by the uncertainties in both coefficients s(a) and s(b). 
s(x0) is calculated by: 
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Accordingly, adopting u(x0) = s(x0) produces u(x0) ≈ 0.6 mm. The 95 % confidence interval (enlargement factor 
equal to 2) for x0 is then given by [x0-2u(x0), x0+2u(x0)] ≈ [699.0, 700.4]. The final result is expressed x0 = 700.2 
± 1.2 mm. 

The above result means that the sensor standard uncertainty, for y = 700 mm, is equal to 0.6 mm, under stable 
laboratory or calibration conditions. 

However, in the field (e.g. in a real sewer), the in situ measurement standard uncertainty is greater than 0.6 mm 
because the water level is not perfectly flat and stable but uneven with at least small waves, the free surface is 

x i y i1 y i2 y i3 y i4 y i5 y i6 y i7 y i8 y i9 y i10 y i11 y i12 y i mean s i

399 399 400 400 400 400 400 400 399 399 399 399 399 399.50 0.5222
799 800 800 800 800 800 800 800 800 800 800 800 800 800.00 0.0000
1200 1201 1201 1202 1202 1202 1202 1201 1201 1201 1201 1201 1201 1201.33 0.4924
1600 1601 1601 1601 1601 1601 1602 1600 1600 1600 1600 1600 1600 1600.58 0.6686
2000 2002 2002 2002 2002 2002 2002 2001 2001 2001 2001 2001 2001 2001.50 0.5222
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not strictly horizontal due to turbulence and secondary flows, the exact position of the sensor in the pipe section 
is not known with a very high precision, etc. An empirical global estimate of this additional sources of 
uncertainty, based on visual observations made in various measurement locations in sewers, is evaluated to be 
about ur = 5 mm (see e.g. Bertrand-Krajewski et al., 2000, p. 223). In some cases, the above small deviations 
from flat free surface could be more significant, leading to significant biases and errors, and it may be necessary 
e.g. to use a set of sensors instead of a unique one to estimate the average water level. Nevertheless, too complex 
hydraulic conditions shall be avoided for flow measurements: alternative locations and even local reconstruction 
or modification of the infrastructure may be necessary. A special attention to local hydraulic conditions, sewer 
geometry, sensor location, and to resulting errors and uncertainties is mandatory. 

As a consequence of the above indication for this example, the in situ measurement standard uncertainty u(h), 
with the above sensor, is assumed to be equal to 

52536.056.0)0()( 2222 ≈+=+=+= ruxuhu mm eq. 44

For calculations in this paper, one uses h = 0.7 m and u(h) = 0.005 m. 

During storm events and high flows, based on in situ visual observations, u(h) may be higher, up to 15 mm. This 
indicates clearly that, if the water level sensor is of good quality with low uncertainties, the main source of 
uncertainty for in situ measurement is due to the natural turbulence and instabilities of water surfaces. 

If detailed information is available, it could be possible to propose a simple empirical function to estimate u(h) as 
a function of h or of the discharge Q.  

3.4.4 Uncertainty in U 
The mean flow velocity U is calculated from the information provided by the Doppler sensor. The Doppler 
sensor, when located on the pipe invert, is determining the mean velocity V (m/s) within a conical volume 
characterised by three parameters: its angle of inclination related to the horizontal line, its angle of aperture, and 
its length. The two first parameters are given in manufacturer’s specifications. The length, which determines the 
volume explored by the sensor, is not fixed and depends on factors like e.g. the variable suspended solids 
concentration or the ultrasound emission frequency. As the sensor explores the conical volume which is only a 
fraction of the cross-section, and as velocity profiles are not uniform through the cross section, the mean velocity 
U (m/s) through the cross section is usually calculated by U = kV, where k is a correction factor to account for 
geometry, flow regime, velocity profiles, etc. 

Theoretically, u(U) could be evaluated from u(V) and u(k) and by using the law of propagation of uncertainties. 
In practice, this is much more complex, as u(V) and u(k) are not known and difficult to assess. On the one hand, 
u(V) is not constant and depends on the discharge conditions (pipe geometry, flow regime, depth of flow, etc.). 
Manufacturers may provide some values for u(V), but they are only indicative and do not necessarily correspond 
to real conditions of use in sewers. Indeed, in most cases, they are estimated either i) by moving the sensor with 
a known velocity over a basin with still water, like for calibration of propeller velocity meters, which does not 
correspond to realistic vertical velocity profiles (see Bertrand-Krajewski et al., 2000, p. 371), or ii) by doing 
measurements under controlled laboratory conditions for limited circular pipe conditions with clean water, which 
cannot be transposed to real sewers. On the other hand, k also changes with flow conditions (geometry, depth of 
flow, etc.) and estimating its uncertainty means than one has another and more precise method to estimate the 
discharge. These difficulties led us to use a more conservative and empirical approach. 

A first attempt consisted to compare, in a real sewer, the mean velocity along a vertical profile measured with a 
calibrated propeller velocity meter and the mean velocity V given by a floating Doppler sensor oriented toward 
the pipe invert (Bertrand-Krajewski et al., 2000, p. 374). Such experiments have been repeated later on 
(unpublished results) with a calibrated punctual electromagnetic velocity meter OTT Nautilus C2000. As these 
measurements are time consuming and cannot be easily carried out and repeated under various flow conditions 
in sewers, we concluded that, as an empirical conservative first approximation, u(U) is around 0.05 m/s, for 
some circular or egg-shape man-entry sewers, and only for water levels between 0.15 and 0.4-0.5 m (for security 
reasons, it is not possible to carry out measurements in sewers with higher water levels occurring during storm 
events). 

Obtaining more accurate in situ estimations of u(U) requires independent, reliable and precise discharge 
measurements. More recently, we applied both salt and Rhodamine WT repeated tracing experiments, with one 
second time step continuous measurements of electric conductivity and fluorescence respectively, with calibrated 
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sensors. These experiments may provide measurements of the discharge Q with an enlarged uncertainty of less 
6 % (preliminary results are given in Lepot et al., 2010). Knowing Q and the water level h also measured during 
the tracing experiments, one can then derive U and its uncertainty. Repeated tracer experiments for various water 
levels and flow conditions will allow better estimating of u(U) than the previous comparisons with velocity 
meters. 

3.4.5 Matlab source code for MC calculations 
 

R = 0.5 + 0.001*randn(1e6,1); 
h = 0.7 + 0.005*randn(1e6,1); 
U = 0.8 + 0.05*randn(1e6,1); 
Q = R.^2.*(acos(1-h./R)-(1-h./R).*sin(acos(1-h./R))).*U; 
result = IC95min(Q) 

with IC95min the following function 
function y = IC95min(V) 
% this function gives a horizontal vector y = [m p1 p2] 
% with m the mean value and p1 and p2 the boundaries of the shortest 
% 95% coverage interval of the vector V 
j = (0:0.01:5)'; 
m = prctile(V,j+95)-prctile(V,j); 
[~, b]=min(m); 
y = [mean(V) prctile(V,j(b)) prctile(V,j(b)+95)]; 

 
  



Evaluation of uncertainties in measurements – Report n° 2011-021 

© PREPARED     27     22 August 2011 

 

4. EXAMPLE 2: ESTIMATION OF TSS AND COD POLLUTANT LOADS FROM 
CONTINUOUS TURBIDITY MEASUREMENTS IN TWO URBAN SEWER 
SYSTEMS 

4.1 INTRODUCTION 
This example is less detailed in terms of algebra and calculations compared to the previous example, as they are 
similar in their principle, but more complete in terms of application and operational results. It presents some key 
methodological aspects for continuous data acquisition and data processing. Their application is illustrated for 
two experimental urban catchments in Lyon, France: i) Chassieu, 185 ha, industrial area with a stormwater 
separate system, ii) Ecully, 245 ha, residential area with a combined system, respectively with 263 and 239 storm 
events recorded (rainfall, discharge, turbidity time series) in the period 2004-2008 with a 2 minute time step. 
This example is copied, with very minor modifications, from Bertrand-Krajewski and Métadier (2010). 

The methodology includes the following main steps: 
1. calibration of sensors and determination of calibration functions 
2. data correction and estimation of uncertainties in corrected data 
3. automated data pre-validation by application of a set of parametric tests 
4. final data validation by an operator 
5. calculation of discharge, TSS and COD concentrations, and their uncertainties 
6. calculation of storm event TSS and COD loads and of their uncertainties, including the dry weather 
contributions in case of a combined sewer system. 

Steps 1 to 4 have been previously described in other papers (see Métadier and Bertrand-Krajewski, 2011). Steps 
5 and 6 are briefly presented in the following paragraphs. 

4.2 CALCULATION OF DISCHARGE AND CONCENTRATIONS OF TSS AND COD 
Various methods can be used to calculate discharge including: (i) Manning-Strickler applied to water level, (ii) a 
water level-velocity relationship in cases where it is locally known, (iii) a locally established rating curve or 
(iv) a combination of water level and flow velocity measurements. Standard uncertainties in discharge can be 
calculated by means of the GUM or MCM approaches. TSS and COD concentrations are calculated from 
correlation functions for turbidity, for both dry and wet weather periods. Correlation functions are determined 
either by the ordinary least squares regression or the Williamson regression, preferably. Details are given in 
Bertrand-Krajewski et al. (2007) and Torres (2008). 

4.2.1 Event load calculation 
TSS and COD event loads are calculated with their standard uncertainties. This includes two sub-steps which are 
described hereafter: (i) the automated determination of the duration of the hydrologic event and (ii) the 
calculation of the event load itself between the determined storm event limits. 

The duration of the hydrologic event comprises (i) the storm event duration itself, i.e. the time between the 
beginning and the end of the rainfall event as measured with the rain gauge and ii) the time needed for a set of 
variables (discharge, conductivity, turbidity) to reach again the values they had before the storm event started. 
The identification of the beginning td and the end tf of hydrologic events is based on 3 criteria: (i) discharge 
threshold, (ii) minimum period between 2 successive independent events and (iii) the maximum duration 
between the beginning of the storm event and the rising of the discharge in the sewer. The identification of the 
end of hydrologic events is more complex than the identification of the beginning as, in some cases, pre-event 
dry weather values of conductivity and/or turbidity are not reached again even many hours after the end of the 
rainfall event. 

Event loads are calculated by integration over the storm event duration of the continuous discharge and TSS or 
COD concentration time series:  
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 eq. 45
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where MX is the event load of pollutant X (kg), CXi is the concentration of pollutant X (kg/m3) at time step i, Qi 
is the discharge (m3/s) at time step i, Δt is the duration (s) of the time step, i is the index, and N is the number of 
time steps corresponding to the duration of the hydrologic event: N = (tf – td)/Δt. 

Standard uncertainties in TSS and COD pollutant loads are calculated by means of the LPU taking into account 
discharge and concentration uncertainties. 

4.2.2 Determination of dry weather contribution during storm events 
Most models of storm weather pollutant loads in combined sewer systems are based on the assumption that the 
total storm event load is the sum of i) the DW (dry weather) contribution that would have been observed during 
the event duration if no event had occurred and ii) the WW (wet weather) contribution including surface runoff + 
possible erosion of deposits accumulated in the sewers. The DW contribution during a storm event can be 
estimated from turbidity time series. 

In addition to eq. 45, it is assumed that:  

WWXDWXX MMM __ +=  eq. 46

WWDW VVV +=  eq. 47

with MX_DW the DW contribution, MX_WW the WW contribution to the total mass MX, V the total event volume, 
VDW the DW volume during the storm event and VWW the WW volume generated by the storm event. 

MX_DW is the pollutant load that would have been measured if no storm event had occurred: by definition, it 
cannot be measured and should be estimated. The proposed method to estimate MX_DW consists to determine the 
most likely DW discharge and turbidity time series (i.e. DW signals) compatible with the DW time series 
measured after and before the observed storm event. This most likely DW signal, named hereafter the reference 
signal, is chosen among available measured DW days which are close to the day during which the storm event 
occurs. The two steps are the following ones: i) test of several DW signals by juxtaposing them to the storm 
event signal and ii) comparing the values and the dynamics of the two signals on common DW periods of some 
hours on both sides (before and after) of the storm event limits: these periods are named the fitting periods. The 
DW signal having the most similar dynamics over the fitting periods is selected to estimate MX_DW. In other 
words, it is assumed that if a tested DW signal is similar to the DW signal measured before and after the 
considered storm event, it is also an appropriate estimation of the un–measurable DW signal during the storm 
event. Possible alternative solutions to the above data base analysis include e.g. dry weather forecasting 
techniques, with a specific analysis of uncertainties. 

The method is illustrated Figure 4.1, where four signals (fitting periods) A to D (dotted lines) are compared with 
the dry periods before and after a storm event. The most similar signal over the fitting periods is signal C, which 
is consequently applied to estimate the DW signal during the storm event. This approach is used for both 
discharge Q and turbidity T signals. 

The DW signals to be tested are not chosen randomly but according to a pre-established DW days classification 
(see paragraph 4.4). The selected reference signal shall satisfy the following criteria: i) both discharge and 
turbidity series are available without any gaps, ii) it must be long enough over the fitting periods to ensure a 
reliable comparison, iii) it is not necessarily an entire DW day as long as the fitting periods are fully covered and 
iv) it can be composed of several DW days in case the storm event is occurring over more than one day (e.g. 
weekdays and weekends. 

In case reference and measured signals are comparable over the fitting periods in terms of dynamics but not in 
terms of absolute values, the reference signal can be translated by applying a simple mathematical signal fitting, 
independently for discharge and turbidity. It is based on a least squares minimization of the distance between the 
two signals, by ignoring extreme distances that correspond to random peaks (especially for turbidity). As for 
dynamics comparison over the fitting periods, the need for translation is visually evaluated by the operator, with 
some possible degree of subjectivity. However, based on our experience with long continuous time series, the 
reference signal translation is rarely required, given measurements from rather close DWDs are usually 
available. The fitting may be necessary in case of long term gaps in the continuous series or long rain periods, 
for which no adequate DW periods are available. 
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MX_DW is then calculated from the reference signal at each time step i during the storm event duration: 
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_ _ _

f DW

d DW
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= Δ ⋅ ⋅∑  eq. 48

with Qi_DW the reference signal discharge, CXi_DW the reference signal concentration of pollutant X computed 
from the signal reference turbidity Turbi_DW, and td_DW and tf_DW the reference signal starting and ending 
times corresponding to the storm event limits td and tf. 

 
Figure 4.1: Example of estimation of the most-likely dry weather contribution during a storm event 

The standard uncertainty u(MX_DW) is then calculated by means of the LPU: 

_

_

2 2 2 2 2 2
_ _ _ _ _( ) ( ) ( )

f DW

d DW

t

X DW i DW Xi DW Xi DW i DW
i t

u M t Q u C C u Q
=

⎛ ⎞
= Δ ⋅ + ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑  eq. 49

with u(CQi_DW) and u(CXi_DW) the standard uncertainties at time step i resp. for discharge and concentration of 
pollutant X of the reference signal. 

Compared to total event load uncertainty, the DW contribution uncertainty includes an additional source of 
uncertainty which is related to the DW contribution estimation method itself, i.e. the error due to the fact that the 
reference signal is substituted to the true but unknown DW signal. Thus, the uncertainty of the substituted 
discharge and turbidity signals at each time step i of the signal reference include both the measurement 
uncertainty u(Qi_DW_m) and u(Turbi_DW_m) and a substitution uncertainty u(Qi_DW_subs) and 
u(Turbi_DW_subs). Under the assumption that substitution uncertainties are normally distributed: 

2 2 2
_ _ _ _ _( ) ( ) ( )i DW i DW m i DW subsu Q u Q u Q= +  eq. 50

2 2 2
_ _ _ _ _( ) ( ) ( )i DW i DW m i DW subsu Turb u Turb u Turb= +  eq. 51

More details about uncertainties in substituted values are given in Métadier and Bertrand-Krajewski (2010b). 
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Table 4.2: Results for the storm event dated Friday 31 October 2008 

Friday 31 Oct. 2008 Total WW contribution DW contribution 
Runoff 6323 +/- 26 m3 4645 +/- 62 m3 1718 +/- 32 m3 

TSS load 729 +/- 22 kg 540 +/- 26 kg 189 +/- 13 kg 
COD load 1324 +/- 42 kg 967 +/- 46 kg 356 +/- 20 kg 
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5. EXAMPLE 3: UNCERTAINTY EVALUATION OF MULTI-SENSOR FLOW 
MEASUREMENT IN A SEWER SYSTEM USING MONTE CARLO METHOD 
The following case study is a more detailed example of application of MCM to discharge measurements in a 
sewer system. The MCM is used hereafter to carry out the evaluation of the measurement uncertainty, 
considering its inherent capacity to deal with non-linear and multi-stage mathematical models. Influence of 
geometric conditions and other relevant parameters in the quality of measurements is discussed. The study was 
developed within the context of a specific sewer system, using a particular measurement system, from which 
measurement data was gathered. This example is copied, with very minor modifications, from Ribeiro et al. 
(2010). 

5.1 INTRODUCTION 
Measurement of flow in sewer systems is a complex task considering the dynamic behaviour of the measurand 
and the effects resulting from non-ideal conditions of operation (Larrarte, 2006). When flow measurements are 
regularly used for managing sewer systems, performance of the measurement system and the quality of 
measurement results becomes critical both to daily operation and to decision making processes within the utility. 

Different solutions can be adopted in order to measure flow in free surface flow conditions in sewers (Bertrand-
Krajewski et al., 2000). One of the most common methods is the velocity-area, usually using multi-sensing flow 
meters composed by a combination of sensors for level and velocity measurement, often mounted in stainless 
steel rings or bands, to be fitted in the inner surface of sewer pipes. The flow can be calculated from 
measurement of different quantities, namely, level and velocity, by applying the continuity equation. The slope-
area methods, using the Manning-Strickler formula or similar formulae, are sometimes used in conjunction with 
the velocity-area method to ensure redundancy. In both cases, calculation of the flow involves the use of non-
linear mathematical models in a multi-stage system. Additionally, in general, these methods assume uniform 
flow conditions often difficult to ensure in actual measurement sites. For the purpose of this example, only the 
continuity equation is considered. 

The development of the uncertainty budget requires the evaluation of contributions due to different uncertainty 
sources, which can be grouped in eight major factors: the measurand; the instrumentation metrological 
performance; the calibration; the sampling; the interface; the user; the environmental conditions; and the data 
processing.  

In the specific case under study, considering the technological development of instrumentation and data 
processing software, the non-ideal conditions of the measurand realization (i.e. non-uniform flow) appears to be 
an important contribution. 

The analysis of the instrumentation assembly and its installation in situ shows the relevance of a number of 
geometric requirements: the placement of probes, measuring angles and cross-sectional geometry. In addition, 
hydraulic conditions associated with the inner pipe characteristics (symmetry conditions, wall roughness, 
hydraulic jump, drops, curves and infrastructure irregularities) can generate different types of waves, energy 
losses and other disturbances contributing to non-uniform flow.  

In order to study the sources of measurement uncertainties and their effects, a second aim of this example is to 
obtain an assessment of the conditions that make the contributions due to geometric quantities dominant in the 
context of the uncertainty budget. 

5.2 METHODOLOGY 
Flow is a quantity measured indirectly, usually obtained by the measurement of other quantities and applying 
mathematical models, the continuity equation being one of the most common. The continuity equation, as given 
by eq. 52, is a functional relation that yields the volumetric flow rate, Q, as a function of the mean velocity, U, 
and the cross sectional area of flow, A, according to the principle of conservation of mass. 

AUQ ⋅=  eq. 52

In practice, the input quantities of this mathematical model, obtained by indirect measurement of other 
measurands, create a multi-stage metrological problem with several input and output quantities, and functional 
relations between them, to reach the final output measurand, Q. 
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Figure 5.1: Input quantities and functional relations to obtain volumetric flow rate 

 
Table 5.1: Set of quantities applied 

Symbol Description 
wus,c  Ultrasound velocity in water (at reference conditions) 

Sf  Emitter frequency 
β  Angle of sound propagation 
fΔ  Doppler frequency shift 

maxu  Peak flow velocity 
uC  Peak to average flow velocity factor 

U  Average flow velocity 
airus,c  Ultrasound velocity in air (at reference conditions) 

it air,tr,
 Wave time of transit 

id , d̂ , d  Displacement, estimate and average values 

D  Diameter of pipe (at flow depth section measurement) 
od  Displacement offset of the acoustic emitter 
usδh  Flow depth variation in the measurement surface 

ush  Flow depth (measured with acoustic us instrument) 
atmw , pp  Pressure of fluid (water) and atmospheric pressure 

g  Gravity 
wρ  Density of water (at reference conditions) 
ph  Flow depth (measured with pressure depth instrument) 
cr  Radius of conduit (at the cross-section area) 

A  Cross-section “wet” area 
iQδ  Flow influence quantities related with the method and with computational processing 

Q  Volumetric flow rate 

 

The flow through a given surface S is defined as the result of an integration of a velocity field over that target 
surface. Thus, U is the average of the field velocities over S. The pattern of the velocity field spatial distribution 
may vary significantly according to the type of flow (e.g. in completely filled pipes or free surface flow) and 
local conditions. The best approximation to the average velocity U in a given flow should be obtained by 
measuring velocities in a large number of points distributed over the target surface, S. 

The measurement of U is often carried out by transducers that capture the effect of the velocities along a straight 
line or, more realistically, along the conical dispersion of the beam (Edelhauser, 1999; Jaafar et al., 2009), by 
assuming that certain flow distribution and symmetry conditions are well known and that yield feasible 
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unpredictable events eventually identified during maintenance operations or data processing, can lead to 
significant measurement errors. However, incorporation of these effects as contributions to measurement 
uncertainty proves to be difficult. Thus, it is expected that the error sources are strongly dependent of local 
conditions at each measurement location. 

The evaluation of the measurement uncertainty contributions is based on the analysis of the variability of 
average values obtained from several locations. The probability distributions were derived from the observation 
of some variables during the measurement process, together with estimated values provided by the 
manufacturers or by referenced bibliography 

5.3 EVALUATION OF MEASUREMENT UNCERTAINTY USING MCM 
Regarding the process used by the Monte Carlo Method (MCM) to perform the evaluation of measurement 
uncertainties, the relations (mathematical models) of the multi-stage system are used directly, together with the 
input data obtained by sampling from probability density functions (PDFs) of each input quantity. The 
computation of the algorithm gives the propagation of distributions in order to obtain the output quantities PDFs 
and their statistical parameters of interest (namely, measurands best estimates and variances). 

The propagation of PDFs from one stage to the following is illustrated in Figure 5.4, assuming that the output 
numerical sequence of one stage (with its own PDF) is taken as the input numerical sequence of the next stage, 
while keeping the statistical properties (such as correlations) characteristic of the each specific random variable. 

 
Figure 5.4: Propagation of density probability functions in a two stage measurement system 

Since the MCM can be applied in the absence of mainstream GUM requirements, such as symmetry of the input 
probability functions (or others), the method proves to be especially suitable to be applied to non-linear 
mathematical models. 

Development of MCM numerical simulations is carried out by generating sequences of up to 106 values for each 
quantity, depending on the required computational accuracy. The draws were based on the Mersenne Twister 
uniform random number generator (Matsumoto and Nishimura, 1998 – this generator is implemented in various 
software tools, e.g. Matlab) and the PDFs were obtained using validated methods like the Box-Muller 
transformation and the inverse cumulative distribution function (CDF) method (Gentle, 2004). Tests to verify the 
computational accuracy of the output PDFs were also made according with Cox et al. (2001) allowing 
concluding that the numerical simulations provide robust and accurate solutions for the metrological problem 
proposed. 

In Table 5.2, the experimental input data and PDF parameters adopted are presented. Some observations to this 
table are: 
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a. The quantity umax includes the contributions from input quantities presented in Figure 5.1 (mathematical 
model f1) combined with the contributions due to the resolution, linearity and drift of the indication device.  

b. The quantity cus,air incorporates the temperature influence of ± 0.17 % /ºC and the influence of pressure of ± 
0.1 % of the readings. 

c. The quantity related with the pipe diameter estimate includes the resolution effect of the measurement 
instrument and the roundness error effect. 

d. The quantity δhus includes surface wave effects. 
e. The quantity δQgeom includes effects due to pipe slopes and other geometry constrains (based on the 

instrumentation manufacturer information).  
f. The quantity δQoverfalls includes the geometric influence due to proximity to drops at entrance to downstream 

manhole.  
g. The quantity δQinst_ring includes effects due to instrumentation ring setup and installation geometry.  
h. The quantity δQcomp includes effects due to computational process performed with modified off-the-shelf 

software. 
 

Table 5.2: Experimental input data and PDFs adopted 

Random variables PDF parameters Units 
maxu

a) N (0.79; 0.01) m⋅s-1

uC  R (0.85; 0.95) adim. 

airus,c
b) R (340.1; 346.9) m⋅s-1 

it air,tr,
 R (8.43; 8.93) ms 

D  R (1793; 1803) mm 

od  R (5; 15) mm 

usδh  R (10; 20) mm 
geomδQ  N (0; 0.0025⋅q) L⋅s-1 
overfallsδQ  N (0; 0.005⋅q) L⋅s-1 
inst_ringδQ  N (0; 0.005⋅q) L⋅s-1 
compδQ  N (0; 0.001⋅q) L⋅s-1 

 

Critical conditions such as backwater flow, very low and off-axis flow velocity components and their relation 
with mean flow velocity were not considered given the difficulty to quantify the consequences on the 
measurement due to these extreme effects. However, special care should be taken when selecting the 
measurement locations to avoid large errors derived from this type of effects. 

MCM simulations were carried out using Table 5.2 values as input parameters. The estimate of the measurement 
result obtained for the output quantity, volumetric flow rate, including its standard uncertainty is 

( ) L/s1.147.229 ±=vQ  eq. 53

and the related output PDF is presented in Figure 5.5. 

Computation results confirm the significant advantage of using the MCM approach, since it allowed the 
evaluation of measurement uncertainty despite the use of a nonlinear function, f7,  
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In fact, results are consistent, giving low computational accuracy values, as shown in Table 5.3. 
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Sensitivity analysis on the model parameters was carried out to define the uncertainty contributions, allowing a 
comparison of the sources of uncertainty effects into the output quantity (flow) uncertainty, as well as giving 
information on the best way to increase system accuracy. Furthermore, the analysis allowed to quantify the 
relation between the measurement uncertainty of the angle of sound propagation and the flow rate and to confirm 
the need to assure that this quantity is obtained with the best accuracy possible. 

The MCM approach is also known for allowing a deeper analysis of the stochastic problems, namely, because it 
provides the output PDFs. This fact became especially relevant, since results showed that the output PDF can 
change from a nearly Gaussian shape to a non-symmetric and non-Gaussian shape depending on the individual 
contributions of some input quantities. This fact is significant as it increases the measurement expanded 
uncertainty interval.  

The analysis of the data allowed concluding that the nonlinear function that provides the cross-section “wet” area 
generates a non-symmetric and non-Gaussian PDFs whose shape is quite similar to some of the output PDFs 
obtained. This conclusion can only be achieved by using a MCM approach.  

This example is relevant to improve knowledge on this type of measurement systems, identifying critical points 
to its accuracy, to the identification of improvement opportunities, and providing useful information to support 
management decisions within the context of quality management. 
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