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Summary

Assessing uncertainties is done systematically in almost all hard sciences research
fields, and in more and more numerous engineering domains. In the field of urban
water systems, this is still not a systematic and common practice. Therefore, one of
the aims of PREPARED is to promote, to contribute and to exemplify how to
systematically evaluate uncertainties in urban water systems.

Assessing uncertainties is necessary:

- to better quantify and to improve the quality of measurements;

- to better contribute in modelling, by accounting for uncertainties in model
structures, inputs, parameters and outputs;

- to better help in decision making.

This PREPARED deliverable includes:

- an introduction to the two internationally recognized standards for assessment of
measurement uncertainties (GUM Law of Propagation of uncertainties and the
Monte Carlo method);

- three examples of application, with various levels of complexity, showing in detail
how to apply the above methods for uncertainty assessment. The examples deal
with sewer systems, but they can be easily transposed to other components of
urban water systems.

- references to additional documents.
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1. OBJECTIVES

Assessing uncertainties is done systematically in almost all hard sciences research fields, and in more and more
numerous engineering domains. In the field of urban water systems, this is still not a systematic and common
practice. Therefore, one of the aims of PREPARED is to promote, to contribute and to exemplify how to
systematically evaluate uncertainties in urban water systems.

Assessing uncertainties is necessary:

- to better quantify and to improve the quality of measurements;

- to better contribute in modelling, by accounting for uncertainties in model structures, inputs, parameters and
outputs;

- to better help in decision making.

The objectives of this deliverable are as follows:
- to introducer the two internationally recognized standards for assessment of measurement uncertainties;
- to provide examples of application.

Many documents already exist: this deliverable will not replicate them, but cites and refers to them as much as
necessary.

Evaluation of uncertainties in measurements — Report n° 2011-021
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2. STANDARDS FOR ASSESSMENT OF UNCERTAINTIES IN MEASUREMENTS

This chapter includes a short introduction, the necessary terminology, some general comments, and a brief
presentation of the two main internationally accepted methodologies for uncertainty assessment (GUM and
MCM).

2.1 INTRODUCTION

The measurement process is the act of assigning a value to some physical variable, by operating sensors and
instruments in conjunction with data acquisition and reduction procedures. In an ideal measurement, the value
assigned by the measurement would be the actual value of the physical variable intended to be measured.
However, measurement process and environmental errors bring in uncertainty in the correctness of the value
resulting from the measurement. To give some measure of confidence to the measured value, measurement
errors must be identified, and their probable effect on the result estimated. Uncertainty is simply an interval
estimate of possible set of values for the error in the reported results of a measurement. The process of
systematically quantifying error estimates is known as uncertainty analysis.

Monitoring of urban water processes should be governed by the ability of the measurements to achieve the
specific objectives within the allowable uncertainties. Thus, measurement uncertainty assessment should be a
key part of the entire monitoring program: description of the measurements, determination of error sources,
estimation of uncertainties, and documentation of the results. Uncertainty considerations need to be integrated in
all phases of the monitoring process, including planning, design, the decision whether to measure or not with
specific instruments, and the carrying out of the measurements. In essence, this means that uncertainty must be
considered even at the definition-of-objectives stage; the objectives should include a specification of the
allowable uncertainty.

Along with this philosophy, rigorous application or integration of uncertainty assessment methodology is an

integral part of all monitoring phases. The most important benefits of standardised uncertainty analysis

implementation are:

- identification of the dominant sources of error, their effects on the result, and estimation of the associated
uncertainties,

- facilitation of meaningful and efficient communication of data quality,

- facilitation of selecting the most appropriate and cost effective measurement devices and procedures for a
given measurement,

- consideration and reduction of the risks in decision making, and

- evidence of compliance with regulations.

2.2 TERMINOLOGY

Terminology in metrology is very specific and confusion with usual or ancient wordings should be avoided.
Some key definitions are provided hereafter. More details are given in the dedicated international standards and
especially in the VIM - International Vocabulary of Metrology (JCGM, 2008, 2010). Additional and more
specific definitions are also given in ISO (2008a, 2008b, 2009a, 2009b).

- Measurand: quantity intended to be measured.

- Uncertainty (VIM definition): non-negative parameter characterizing the dispersion of the quantity values
being attributed to a measurand, based on the information used. This VIM definition remains very similar to
the definition of the standard deviation. This is why the GUM (ISO, 2008a) provides a more specific
definition, with three notes:

- Uncertainty (GUM definition): parameter, associated with the result of a measurement, that characterizes
the dispersion of the values that could reasonably be attributed to the measurand.

- NOTE 1 The parameter may be, for example, a standard deviation (or a given multiple of it), or the half-
width of an interval having a stated level of confidence.

- NOTE 2 Uncertainty of measurement comprises, in general, many components. Some of these
components may be evaluated from the statistical distribution of the results of series of measurements
and can be characterized by experimental standard deviations. The other components, which also can be
characterized by standard deviations, are evaluated from assumed probability distributions based on
experience or other information.
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- NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the
measurand, and that all components of uncertainty, including those arising from systematic effects, such
as components associated with corrections and reference standards, contribute to the dispersion.

Measured quantity value: measured value of a quantity measured value, quantity value representing a

measurement result.

True value or true quantity value: quantity value consistent with the definition of a quantity. A true value

is usually unknown.

Measurement accuracy: closeness of agreement between a measured quantity value and a true quantity

value of a measurand. (See also Figure 2.1).

Measurement trueness: closeness of agreement between the average of an infinite number of replicate

measured quantity values and a reference quantity value. (See also Figure 2.1).

Measurement precision: closeness of agreement between indications or measured quantity values obtained

by replicate measurements on the same or similar objects under specified conditions.

Measurement error: measured quantity value minus a reference quantity value.

Systematic measurement error: component of measurement error that in replicate measurements remains

constant or varies in a predictable manner.

Measurement bias: estimate of a systematic measurement error.

Random measurement error: component of measurement error that in replicate measurements varies in an

unpredictable manner.

Repeatability condition of measurement: condition of measurement, out of a set of conditions that includes

the same measurement procedure, same operators, same measuring system, same operating conditions and

same location, and replicate measurements on the same or similar objects over a short period of time.

Reproducibility condition of measurement: condition of measurement, out of a set of conditions that

includes different locations, operators, measuring systems, and replicate measurements on the same or

similar objects.

Measurement reproducibility: measurement precision under reproducibility conditions of measurement.

Standard measurement uncertainty: measurement uncertainty expressed as a standard deviation.

Combined standard measurement uncertainty: standard measurement uncertainty that is obtained using

the individual standard measurement uncertainties associated with the input quantities in a measurement

model.

Relative standard measurement uncertainty: standard measurement uncertainty divided by the absolute

value of the measured quantity value.

Expanded measurement uncertainty: expanded uncertainty product of a combined standard measurement

uncertainty and a factor larger than the number one.

Coverage interval: interval containing the set of true quantity values of a measurand with a stated

probability, based on the information available.

Coverage probability: probability that the set of true quantity values of a measurand is contained within a

specified coverage interval.

Coverage factor: number larger than one by which a combined standard measurement uncertainty is

multiplied to obtain an expanded measurement uncertainty.

Measurement function: function of quantities, the value of which, when calculated using known quantity

values for the input quantities in a measurement model, is a measured quantity value of the output quantity in

the measurement model.

Influence quantity: quantity that, in a direct measurement, does not affect the quantity that is actually

measured, but affects the relation between the indication and the measurement result.

Correction: compensation for an estimated systematic effect.

Figure 2.1 illustrate some of the above definitions.
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Figure 2.1: lllustration of measurement error concepts (AIAA, 1995)

2.3 GENERAL COMMENTS ON UNCERTAINTY ANALYSIS AND BIAS
The following paragraphs are adapted from Bertrand-Krajewski and Muste (2007).

Uncertainty analysis (UA) is a rigorous methodology for estimating uncertainties in measurements and in the
results calculated from them. It combines statistical and engineering concepts. The analysis must be done in a
manner that can be systematically applied to each step in the data uncertainty assessment determination.

Biases are usually very difficult to detect and remove. Sensor calibration with links to primary or secondary
standards is a way to evaluate and remove (by correction) biases. However, sensor calibration qualifies the
sensor itself, and not necessarily its use in a given location under given conditions which may themselves be the
source of additional bias. This aspect should be accounted for as much as possible, as even relatively small
biases may have dramatic effects on the final results from monitoring programmes (Fletcher and Deletic, 2007).
If biases can be detected and assessed, they can be accounted for in the uncertainty assessment. In other cases,
correct information on systematic errors is non-existent or very weak, and estimations are not possible. An
alternative method in this case may be to simulate scenarios, i.e. to simulate the effects of possible systematic
errors on the final results, in order to answer questions like “what if...” (e.g. how would the discharge and its
uncertainty change if the water level sensor had a bias of + 2 cm?). In all cases, investigation to identify and
remove possible biases, even if it is difficult, is a very important task to be carried out with the highest degree of
rigour and intellectual honesty.

Frequently, instrumentation errors are the only ones dealt with in estimating uncertainties. This is unfortunate,
because in many situations errors such as those induced by flow-sensor interaction, flow characteristics, and
measurement operation are frequently larger than the instrument errors. This is why, as much as possible, the
location and conditions of use of sensors should be accounted for to evaluate the total resulting uncertainty. For
example, a water level sensor may have an instrument uncertainty (evaluated by means of an adequate
calibration with certified standards) of £ 1 mm. If this sensor is used in a sewer system where the water is not
still and perfectly horizontal, but moves downstream and generates small waves at the surface with possible
secondary currents, leading to a non-horizontal free surface, the final uncertainty may reach = 1 cm or more (see
examples in Chapter 3). Conceptual biases (i.e. errors that might stand between concept and measurement) are
generated during the test design and data analysis through idealisations (assumptions) in the data interpretation
equations, use of equations which are incomplete and do not acknowledge all the significant factors, or by not
measuring the correct variable (Moffat, 1988). Despite the potential importance of conceptual biases, and the
challenging in assigning significance to what has been measured, this category of uncertainty is beyond the
scope of this deliverable and will not be further discussed.

2.4 INTERNATIONAL STANDARDS FOR ASSESSING UNCERTAINTY IN MEASUREMENTS

The first internationally unified frame for UA in measurements was the GUM — Guide for Uncertainty in
Measurements, published in 1993 (GUM, 1993), re-published with some revisions in 1995 and also as a
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European standard in 1999 (ENV 13005, 1999). GUM is based on statistical methods. Since its publication, it
has been revised, adapted and completed as parts of a new Guide for Uncertainty in Measurement (abbreviated
as the Guide) elaborated at international level by the JCGM — Joint Committee for Guides in Metrology
convened by the Bureau International des Poids et Mesures (BIPM), the International Electrotechnical
Commission (IEC), the International Organization for Standardization (ISO), and the International Organization
of Legal Metrology (OIML). The Supplement 1 published in 2008 introduces the Monte Carlo method for
uncertainty assessment.

In this document, we will refer to the following parts of the Guide:

= As the global introduction for all concepts and methods:
ISO (2009a). ISO/IEC Guide 98-1:2009(E) Uncertainty of measurement — Part 1: Introduction to the
expression of the uncertainty in measurement. Geneva (Switzerland): ISO, September 2009, 32 p.

= As Guide for uncertainty in measurements method (abbreviated as GUM in this deliverable):
ISO (2008a). ISO/IEC Guide 98-3:2008(E) Uncertainty of measurement - Part 3: Guide to the
expression of uncertainty in measurement (GUM: 1995). Geneva (Switzerland): ISO, December 2008,
130 p.

= As Monte Carlo method (abbreviated as MCM in this deliverable):
ISO (2008b). ISO/IEC Guide 98-3/Suppl.1:2008(E) Uncertainty of measurement - Part 3: Guide to the
expression of uncertainty in measurement (GUM: 1995) Supplement 1: Propagation of distributions
using a Monte Carlo method. Geneva (Switzerland): ISO, December 2008, 98 p.
ISO (2009b). ISO/IEC Guide 98-3/S1/AC1:2009(E) Uncertainty of measurement - Part 3: Guide to the
expression of uncertainty in measurement (GUM: 1995), Supplement 1: Propagation of distributions
using a Monte Carlo method, Technical corrigendum 1. Geneva (Switzerland): ISO, May 2009, 2 p.

GUM and MCM are also referred to as the “propagation of uncertainties” method and the “propagation of
distributions” method, respectively.

This deliverable cannot reproduce the full content of the above detailed standards: a brief introduction is
presented below, and examples are given in Chapters 3 to 5. It is the responsibility of the reader, when
estimating uncertainties in measurements, to get an original version of the above standards and to apply the
methods. For the PREPARED project, the authors of this deliverable may assist the user in case some difficulties
occur in applying the methods.

The following sections are adapted from Muste et al. (2011).

2.4.1 GUM method

The GUM implementation entails the following steps:

Define the measurement process. A mathematical relationship of the measurement relates the measurand and
input quantities. The measurement process has to provide an estimate (measurement) of each input quantity and
the influence quantities involved in the measurement process.

Evaluate the standard uncertainty of each input estimate u(x;) . Standard uncertainties can be evaluated using
statistical methods (Type A) or other methods (Type B).

Type A evaluation. The standard uncertainty u(x;)of an input quantity X, determined from » independent

repeated observations is u(x;) = s(}i) , calculated as follows:

2y S ()
s (Xl.)lek eq. 1
where
2 1 < -2
s (xik)z_z(xik_xi) eq. 2
=1
— 1
xi:_zxik eq.3
=
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The variable X; is a random variable subjected to n independent observations (large number, i.e., more than 30),
X obtained under the same measurement conditions. Based on the available data, several situations can be

distinguished [small measurement sample and knowledge from one set of previous observations, small
measurement sample and knowledge from several sets of previous observations, and large measurement sample
of current measurements (recommended)]. In Type A evaluations of measurement uncertainties, the assumption
is often made that the distribution best describing the quantity is Gaussian. When uncertainties are determined
from a small number of values, the corresponding distribution can be taken as a ¢-distribution.

Type B evaluation. Type B evaluations are those carried out by means other than the statistical analysis of a
series of observations. This evaluation type is necessary when no current measurements or one (single)
measurement are available. Consequently, previous knowledge is required. As Type B assessments have to
ensure similar confidence levels as those obtained for Type A evaluations, they require a knowledge of the
probability distribution associated with the uncertainty and the associated degree of freedom.

Type B standard uncertainty is based on the expected dispersion of measurements and the assumed probability
distribution. The dispersion a; is the estimated semi-range of a component of uncertainty associated with an

input estimate x;, as defined in Figure 2.2. The probability distribution can take a variety of forms, but is

generally acceptable to assign well-defined geometric shapes (i.e., rectangular, Gaussian, triangular, asymmetric)
for which the standard uncertainty can be obtained from a single calculation (see Figure 2.2). Typical examples
of rectangular probability distributions include (ISO, 2005): maximum instrument drift between calibrations;
error due to limited resolution of an instrument’s display or digitizer; and manufacturers’ tolerance limits. A
normal probability distribution can also be used in association with calibration certificates quoting a confidence
level (or coverage factor) with the expanded uncertainty. The triangular probability distribution is used when the
only information available about a quantity is the maximum bounds within which all values of the quantity are
assumed to lie. In some measurement situations, the upper and lower bounds for an input quantity are not
symmetrical with respect to the best estimate due to, for example, a drift in the instrument. For such situations,
the asymmetric distribution would be appropriate for estimating the standard uncertainty.

P(x) u(x;) = (a, +b)A12

a, = U = expanded uncertainty; k = coverage factor

Figure 2.2: Probability distributions used to estimate Type B uncertainties (Muste et al., 2011)

Add uncertainty components for each input variable. The various sources of uncertainties for a variable,
irrespective of their provenance and type (A or B), are compounded using the root-sum-square (RSS)
combination using:

K
2 2
u(x;) :Zu(xi)j eq. 4
j=l1
where u(x;) ; is the j-th standard uncertainty associated with the variable x,.

Determine the estimated results. Use the measurement function f to calculate the measurand y in conjunction
with the N determined input quantities x;, :

Y= f(xlaxb"'xN) €q. 5
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Determine the combined standard uncertainty u.(y). The combined standard uncertainty is obtained using the
following equation, frequently referred to as the LPU - Law of Propagation of Uncertainties:

N af 2 N-1 N af af
)= | 2] Wi (x)+2 L u(x,x; .6
2003 (L] iere2E 3 L 8wt .

where f'is the measurement function and each standard uncertainty u(x;) is estimated using either the Type A or

B evaluation, or both. x; and x; are estimates of X; and X, and u(x;,x;)=u(x;,x;) is the estimated

>

covariance associated with x; and x; :

u(x;, x ;) = r(x;,x; Ju(x;Ju(x ;) eq. 7
where r(x;, x;) is the correlation coefficient of x; and x;.

N is the number of input variables.

The partial derivatives, as called sensitivity coefficients c;, are evaluated at X, = x; using:

e

¢ ax. eq. 8

In case f'has a very complicated analytical expression, its derivative may be difficult to establish analytically. It
can be replaced by a numerical second order approximation:

o~ S +e)—f(x;—¢)

e eq. 9
where ¢ is very small compared to x; (typically, one can use € = x; /1000).
Determine the expanded uncertainty, using
U =ku,(y) eq. 10

where £ is the coverage factor.

Ideally, uncertainty estimates are based upon reliable Type B and Type A evaluations with a sufficient number
of observations such that using a coverage factor of k¥ = 2 will ensure a confidence level close to 95 %. If any of
these assumptions is not valid, the effective degree of freedom vefr needs to be estimated using the Welch-

Satterthwhaite formula

o W)
o TN ui4(y) eq. 11
2
i=1 i
where
2 & o < 2
ul () =17 (») = (culx,)) eq. 12
i=1 i=1

and c; is the sensitivity coefficient.

In case only a few observations are available, the value of £ should be larger than 2 to estimate a 95 %
confidence level, by replacing & by the Student ¢ value which depends on the degrees of freedom (see application
in Example 1, paragraph 3.2.1).

Report the results together with the combined and expanded uncertainty. The result of a measurement is
expressed as:

Y=yxU=ytku.(y) eq. 13
which is interpreted as the best estimate of the value attributable to the measurand ¥, with y—U to y+U an
interval that may be expected to encompass a large fraction of the distribution of values that could reasonably be
Evaluation of uncertainties in measurements — Report n° 2011-021
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attributed to Y (typically, 95 % for k = 2). The reports for uncertainty estimates should present an uncertainty
budget containing information such as probability distribution type, standard uncertainty, sensitivity coefficient,
degrees of freedom, etc.

The method is summarized in Figure 2.3.

] Measurement
functional relationship

X, X X Xy Observations using the
U(X,) ..... u{x}) ............... U(X)) ..... U(XN) - measurement systems
Ah AN ux, x) AAR £

; | H H . : . Elemental & correlated
9 . \ 4 . . \ error sources

Y = F(Xg, X Xpy)
N[ of 2 NN o of Measurement result (y),
- ( 2 or ¢ <— combined (u,) &
= - ju(x)+2 = o u(x, x c o
vty ; ((ij) (x) ; an:f ax; 09X, (% %) expanded (U) uncertainties
U=ku,(y)

| Y= yi'UI Result estimate

Figure 2.3: Flowchart illustrating the GUM implementation steps (Muste et al., 2011)

2.4.2 Monte Carlo Method

The GUM uncertainty framework can be expected to work well in many circumstances. However, if there are
assumptions that do not hold, the analysis might not give valid and meaningful results.

The main assumptions for a valid application of the above GUM methods are the following ones:

- the first order Taylor series (eq. 6.) is a valid approximation of u.. (y)2, i.e. higher orders terms are negligible
compared to first order ones and linearity is verified;

- all standard uncertainties u(x;) are small compared to x; values;

- all uncertainties should be rather symmetrical around x; values.

Evaluating the covariance terms in eq. 6 may be a difficulty in applying the GUM method. Indeed, if the same
measured value is used to evaluate two or more quantities, then the correlation coefficient (eq. 7) of these two
quantities is equal to one (e.g. the water level maybe used to estimate both flow cross section and wet perimeter
in the Manning-Strickler equation). A more complex case is when standard uncertainties in measured values
(and not measured values themselves) are correlated.

The Monte Carlo Method (MCM) is more frequently used, as the degree of difficulty is less (from a
mathematical point of view) than GUM. As a rule of thumb, if GUM usage is proven to be favourable, it should
be used as the adopted uncertainty framework, as it is faster once eq. 6 is established for a given measurement
process. If not, MCM can be considered instead. The steps for implementing MCM are given bellow, most often
conducted using software since manual calculation of large distributions is not feasible.

In case of doubt, it is recommended to compare GUM and MCM for a few cases and, according to the obtained
results, to decide which method should be applied routinely.

The main principle of MCM consists to estimate M times the measurand Y by means of artificial (computer
generated) samples of size M for each input quantity X;. Each sample is generated with the appropriate
probability distribution function - PDF (Gaussian, uniform, empirical, etc.) for each input quantity X;. This is
simple when all X; —s are not correlated (no covariance) or when they are fully correlated (i.e. H(Xj, Xj) = 1). If
samples should be partly correlated, specific techniques are necessary: if all PDFs are Gaussian, the Guide gives
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all necessary information. If PDFs are not Gaussian, the problem may be more complex and specific statistical
methods shall be applied, which can be found in the scientific literature (e.g. Gentle, 2004). Once the M values

of the measurand are calculated, one calculates then the mean value y and its empirical coverage interval [yjow»
Yhigh] determined from the percentiles of the PDF of the calculated measurand. One uses typically a 95%
coverage interval.

The implementation steps of MCM are:

Select the number of trials M to be made (a value of M = 106 can often be expected to deliver approximately
95 % coverage interval for the output quantity, such that this length is correct to one or two significant decimal
digits). As there is no guarantee that M = 106 or any specific pre-assigned number will suffice, an adaptive
MCM (which selects M adaptively as the trials progress until various results of interest have stabilized in a
statistical sense) is described in the Guide.

Sampling from probability distributions and evaluation of the model

N vectors with values x;; of size M (j = 1:M) are drawn from the PDFs gX; (é) for the N input quantities X;.

The N vectors maybe independent, partly or fully correlated depending on the appropriate assumptions. The
measurand is then evaluated for each of the M draws from the PDFs for the N input quantities by using the
measurement function (eq. 5). Draws are as xq, . . ., xn where the j-th draw x; contains xyj, . . ., xnj, and xjj

being a draw from the PDF for X;. The measurand estimates y; are:

Y= (x,%,..xy;) forj=1:M eq. 14

Figure 2.4 graphically depicts both MCM and GUM methods for N = 3 independent input quantities X;. On the
left graph, the gx;(§;)i= 1, 2, 3, are Gaussian, triangular, and Gaussian, respectively, and the output PDF
gy(n)is asymmetric. The asymmetric distribution can be associated with non-linear models or asymmetric

g5 (&) .

Sort model values into strictly increasing order, using the sorted model values to provide G, a discrete
representation of the distribution function Gy (n) for the output quantity Y.

Estimate the mean of the output quantity y of Y. In addition, the associated standard uncertainty u(y) can be
estimated as equal to the estimated standard deviation s(y) by using appropriate statistical methods.

Estimate an appropriate coverage interval for Y, for a stipulated coverage probability p, by applying the
adaptive Monte Carlo procedure if necessary to provide (approximations to) the endpoints yjow and yhigh of the
required (probabilistically symmetric or shortest) 100 p % coverage interval for the output quantity. A numerical
result is deemed to be stabilized if twice the standard deviation associated with it is less than the targeted
numerical tolerance, associated with the standard uncertainty u(y) as described.

The conditions for MCM application are (ISO, 2008, Chapter 5.10.1):
- fis continuous with respect to all X; —s in the neighbourhood of the best estimates x; of the X
- the PDF for Yis:
- continuous over the interval for which this PDF is strictly positive,
- unimodal (single-peaked), and
- strictly increasing (or zero) to the left of the mode and strictly decreasing (or zero) to the right of the
mode.
- A sufficiently large value for M is used.

The MC method is summarised in Figure 2.4.
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Figure 2.4: Simplified schematic diagram (1SO, 2008).
Left: propagation of distributions (MCM); right: law of propagation of uncertainties (GUM)

2.5 APPLICATION OF GUM AND MCM

In chapters 3 to 5, a few examples are provided to illustrate how to apply the GUM and MCM approaches of
uncertainty assessment in measurements. For clarity, they may provide a few redundancies in explanations. The
examples are dealing with discharge measurements, volume measurement and pollutant concentrations in
collection systems. But they can easily be applied also in water supply, wastewater treatment, etc.

Additional information can be found in many papers e.g. Gruber ef al., 2005, Schilperoort et al., 2009, Lacour,
2009.

Note: examples and references applying GUM or MCM to other urban water systems than sewer systems are
particularly welcome, especially if they provide new information in compatibility with GUM and MCM. They
will be included in future versions of the documents.
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3. EXAMPLE 1: APPLICATION OF TYPE B AND MONTE CARLO METHODS
FOR UA IN CASE OF DISCHARGE AND VOLUME MEASUREMENTS IN A
CIRCULAR SEWER PIPE

3.1 INTRODUCTION

In this example, the uncertainty in the discharge and volume measured in a circular sewer pipe is calculated by
means of two methods: i) the GUM type B method by application of the law of propagation of uncertainties LPU
(ISO, 2009a) and ii) the Monte Carlo method (ISO, 2008, 2009b). For pedagogical reasons, most algebra and
calculations are presented in detail. This example is copied, with minor modifications, from Bertrand-Krajewski
(2011).

3.2 DISCHARGE MEASUREMENT

Let consider a circular concrete sewer pipe with radius R = 0.5. It is assumed i) that the pipe is circular and not
affected by any deformation, and ii) that there are no deposits on the invert.

The discharge O (m3/s) is then given by

2
O(R,h,U)= S(h)U = R*| Arccos (1—%)—(1—%) 1—[1—%} U eq. 15

where 4 (m) is the water level and U (m/s) the mean flow velocity.

Calculations have been made with the following values:

R=0.5m, u(R)=0.001 m

h=0.7m, u(h) = 0.005 m

U=0.8 m/s, u(U)=0.05 m/s.

Paragraph 3.4.1 explains how the standard uncertainties u(R), u(#) and u(U) have been estimated.

The resulting discharge Q = 0.4697 m3/s. Note here that all results in the paper will be given with 4 or more
digits only for illustration and comparison purposes. Under real conditions of application, one, two or three
digits would be sufficient: the additional ones appear in italic characters in numerical values. However, it is of
course recommended to keep the maximum number of digits in all intermediate calculations.

3.2.1 Type B method

All measured variables R, 4 and U are measured independently with different instruments and are not correlated.
The effective degrees of freedom for the measurand are obtained using eq. 11, using the corresponding degrees
of freedom for each variable (i.e. v, =3,v, =59, and v, = ). The resulting effective degree of freedom

for the measurand is 70256, a large value that for practical purposes can be considered an infinite value.
Consequently, the law of propagation of uncertainty (LPU) can be written

2 2 2
2 2 00 2( 90 2( 0@
u(Q)” =u(R) (aR) +u(h) [ahJ +u(U) [an eq. 16

The partial derivatives and their numerical values are equal to

(Z_I%] - 2UR Arccos (1 _%) —2UN2KR - h? = 0.852 638 427 096 m2/s eq. 17
(Z_%] = 2UN2hR—h? =0.733 212 111 192 m2/s eq. 18
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[Z—gj = R? Arccos (1 - %j —(R-hW2hR - h? =0.587 229 807 114 m2 eq. 19

In case algebra is considered too difficult, the above exact analytical expressions can be replaced by numerical
estimations of partial derivatives by applying a second order approximation operator (several digits are given
only for comparison between exact and approximated values):

(G_Qj _ OR+0x,h,U)—0O(R—-0z,h,U) < 0.469792 -0.469775 ~0.852 638 427 287 m2/s

26, 2.107 eq. 20

OR

with 8 =107 m

— ~0.733212 111 117 m?/s
25, 2.10 eq. 21

(G_Qj _OR,h+6,,U)=O(R,h=5,,U) _0.469791—0.469776
oh

with &, = 10°m

~0.587 229 807 111 m2

( 20 ) _OR,AU +8,) = O(RM,U —5,) _ 0.469789 -0.469777

=
oU 26y, 2.10 eq. 22

with §;; =107 m/s

It is important to note that 3, values should be chosen in such a way that 8, << u(x).

Eq. 2 gives

u(0)2 =7.2699.10-7 + 1.3440.10-5 + 8.6209.10-4 = 8.7626.10-4 m6/s2 eq. 23

and then the standard uncertainty u(Q) = 0.0296 m3/s ~ 0.03 m3/s.
With the enlargement factor k, = 2, O + ko.u(Q) = 0.4697 + 0.0592 m3/s.

kou(Q) _ 0.0593
O 04697

=0.126 =12.6 %.

i.e. a relative enlarged uncertainty

This can be interpreted as the true value Q has an approximately 95 % probability to lie in the interval
[0 - ko(Q), O + keu(Q)] =[0.4106, 0.5289] ~ [0.41, 0.53].

Under real conditions, one would use O = 0.47 £+ 0.06 m3/s.

One should note that, in eq. 23, the first term (7.26.10-7) is negligible compared to the two other ones: the
contribution of the uncertainty in R to the total uncertainty in Q can be ignored. In addition, the contribution of
the uncertainty in % is lower than the contribution of the uncertainty in U. However, this conclusion is not valid
for all possible values of R, & and U: a specific analysis can be made for each particular set of values (R, 4, U).

3.2.2 Monte Carlo method

For this example, N = 106 simulations are run. Details of calculation are given in Appendix 3.4.5.

The following samples are created:

N values of R normally distributed with mean value R =0.5m and standard deviation s(R)=0.001 m.

N values of 4 normally distributed with mean value  =0.7 m and standard deviation s(h) =0.005 m.

N values of U normally distributed with mean value U = 0.8 m/s and standard deviation s(U) =0.05 m/s.

All samples are independent and not correlated. The histogram of the water level sample is shown in Figure 3.1.
The coefficients of correlation between the three samples are given in Table 3.1: the samples are clearly not
correlated.
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number of values

4.5

0.67 0.68 0.69 0.7 0.71 0.72 0.73
water level h (m)

Figure 3.1: Histogram of the water level sample (one million values of h)

Table 3.1: Coefficients of correlation between the samples of the three variables R (m), h (m) and U (m/s)

number of values

R h U
R 1 -0.0004 -0.0009
h 1 +0.0005
U 1

4.5

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
discharge Q (m%s)

Figure 3.2: Histogram of the discharge sample (one million values of Q)
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Figure 3.3: Width of the 95% coverage interval vs. the lower percentile of the coverage interval

The histogram of the resulting N values of discharge QO is shown in Figure 3.2. The mean value Qs equal to
0.4698 m3/s.

The variation of the width of the 95% coverage interval is represented in Figure 3.3. The shortest 95% coverage
interval is [0.4179, 0.5279] = [0.41, 0.53]. In this simple case, the shortest 95 % coverage interval is equivalent
to the traditional symmetrical 95 % confidence interval, but it may be different in other cases.

Simulations with other samples of the same size N = 106 give slightly different values. This is illustrated in
Table 3.2 with 10 uncertainty evaluations. The standard deviation in the bottom line reveals that the dispersion of
the results is very small and, in this case, negligible.

Table 3.2: Ten Monte Carlo uncertainty assessments (UA) with N = 106

UA # 0 (m3/s) shortest 95 % CI
1 0.4698 0.4115  0.5275
2 0.4698 0.4112  0.5273
3 0.4698 04118  0.5277
4 0.4698 0.4122  0.5283
5 0.4698 0.4118  0.5279
6 0.4698 04116  0.5275
7 0.4698 04118  0.5278
8 0.4698 0.4120  0.5278
9 0.4697 0.4114  0.5276
10 0.4698 0.4125  0.5284

Mean value 0.4698 04118 0.5278
Standard deviation 0.0000 0.0004  0.0003

3.2.3 Comparison
The type B method gives § = 0.4698 m3/s and the 95 % confidence interval is [0.4106, 0.5289] with k, = 2.
The Monte Carlo method gives § = 0.4698 m3/s and the shortest 95 % coverage interval is [0.4119, 0.5279].

When considering only 2 digits as normally applied in practice, both results are considered similar.
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If k, = 1.96 is used instead of k, = 2 (resp. a 95 % confidence interval instead of a 95.5 % confidence interval in
case of a normal distribution), the type B interval becomes [0.4177, 0.5278] which is closer to the Monte Carlo
shortest 95 % coverage interval.

Considering the Monte Carlo method as the reference method, one may conclude that, in this case, the type B
method is validated and can be applied routinely, e.g. to discharge time series. The type B method requires
preliminary algebra compared to the Monte Carlo method but, if it is validated, it runs faster than the Monte
Carlo method when applied for example to time series. However, for single uncertainty assessment, the Monte
Carlo method may be faster.

3.3 VOLUME MEASUREMENT

The second example deals with the estimation of the uncertainty in the volume calculated from discharge
measurements. Let consider the volume V(7T) corresponding to the volume cumulated at time 7 over a duration
0 ': V(1) is the integral of the discharge Q() from time 7-6 to time T*

t=T

V(T)= j O(t)dt eq. 24
=T-0

In practice, O(t) is not measured continuously but with a discrete time step Az. In addition, the true values of O()
are not known: they are estimated by the discrete measured values g(jAf). The true volume V(7) is then estimated
approximately by the discrete sum V(7):

Ve(T) = ZQ(T —(n—(j-D)Ar)At eq. 25
=

with n the number of time steps Az for the duration 6 = nAz and j the time index.

Assuming that the uncertainty in the value of Az is negligible, two main sources of uncertainty affect the estimate
Ve(T): 1) uncertainties in the measured values g(jAf), which are estimated e.g. as shown in section 3.2 above,

ii) uncertainties due to the discretisation of the true continuous signal Q(¢), which will be analysed hereafter.
Uncertainties due to the discretisation have themselves two sources: i) the fact that the starting time of the
measurement duration 6 is arbitrarily, i.e. randomly, decided among all possible starting times uniformly
distributed within the first time step At, ii) the fact that the exact integral of the continuous signal is replaced by a
numerical sum of a limited number of discrete values.

Let re-write the discrete times as follows:

t=T+1t-(n-j+1)At eq. 26
to is the time of the first discrete measurement of the discharge. It is considered as a random variable within the
first time step window [T - nAt, T - (n - 1)A]. Once £y is chosen, all subsequent discrete times 7; are determined
by eq. 26.

The measured discharge g(#j) can be written:

q(t;)=0(tj) +elt;) eq. 27

with O(#) the true value of the discharge O and e the error (i.e. the difference between the true but unknown
value O and the measured value g) at time 7. The variance of g(¢) is equal to the variance of e(#j) as O(%)) is the
true value. Consequently,

ulg(t )P = ulete ) =varletz ) eq. 28

' If the duration © start at £ = 0, then J(7) is the integral from #=0 to 7=0. As, in many cases,  may not
necessarily coincide with 0 (zero), especially in case of e.g. successive storm events, we have adopted the more
generic (but a little more complex notation) from 7-0 to 7.
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eq. 27and the algebra presented in section 3.3.1 hereafter are a simplified re-writing of a more detailed approach
presented in Joannis and Bertrand-Krajewski (2009).

In order to illustrate the application of the above concepts and equations, true values of O(f) and V(7) are
necessary. That is the reason why a fictitious reference hydrograph O(7) has been created as the true value of a
discharge time series (Figure 3.4). It corresponds to a 24 hour hydrograph at the outlet of a combined sewer
system from 00:00 to 23:59 (1440 minutes) with a storm event occurring during the night between 04:00 and
06:00 (minutes 240 to 360). The hydrograph is the sum of constant and sinus continuous functions, allowing
calculating the exact true value of the volume ¥(7) in 24 hours, equal to 3000 m3. The uncertainty in estimates
Ve(T) will be evaluated by both the type B approach and Monte Carlo simulations.

0.25

e e s Tt S i s

©
[
a

| e o e e et T B s Rt e

discharge Q(t) (m3/s)

T e R e B R et BT R e

1320 1440

time (minutes)

Figure 3.4: Fictitious 24 hour reference hydrograph

3.3.1 Type B method

Let define
AQ( ) =(%)—Q(f D eq. 29

AQ(#) is the distance between each true discharge value Q(#j) and the true mean discharge, in the interval [7-0,

T]. Each discharge value is considered here as an approximation of the mean value: this allows distributing the
error in the estimate V¢(7) equally for each time #. This hypothesis, combined with eq. 26 and eq. 27, leads to

Vo) =V (T)+ Y [A0( ) +e(t )|t eq. 30
j=1

With the hypothesis that Az has a negligible uncertainty, it is convenient to re-write the above equation as
follows:

VoT) _V(T) 3
T=T+;1[Ag(rj)+e(t,-)] eq. 31

Then, accounting for the fact that V(7) is the true value of the volume and consequently has no uncertainty, the
LPU applied by accounting for all covariances leads to
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n-1 n
M(VZE?) Zu(e@ N zu(AQ@ P+2Y S0 ).a0w)

j=l1 J=lk=j+1

—1 n n-1 n cq. 32
2y Zu(e(tj),e(tk))-i-Zz > u(AO ) ety)
J=lk=j+1 J=lk=j+1

According to eq. 28, u(e(t))) = u(q(¢)))-

According to eq. 29, u(AQ(tj)):u(Q(tj)) and u(AQ(tj ), AQ(tf )): u(Q(tj),Q(tk)) as M(7) is a true value. If 4
and # are known, Q(#) and Q(#) are also known and have no uncertainty. They can be considered as random
variables only if # and #; are random variables. If the time step Az is fixed, the possible variations of the j-th
measurement g(¢j) used in eq. 25 correspond to uniformly distributed variations of ¢ in the time step interval [(7—
n—j-1)At, (T-n-j)Af]. In practice, all values of # are fixed if 79 is given (eq. 26). Consequently, the possible
variations of g(¢) are only due the variations of 79, which is the key variable when considering uncertainties due

to discretisation. u(Q(t j))2 and u(Q(z i) Q(tk)) are thus respectively the variance and covariance of the

discharge values when ¢ is randomly chosen in a time interval of length equal to Az. In practice, the continuous

true discharge Q is not known: only discrete measured values g are available. A model is then necessary to
interpolate between discrete values ¢ to re-build a virtual continuous signal. It is important to note that the
covariance u(Q(t i) Q(tk)) is not the covariance between successive values O(¢), O(t; +A?), O(tj +2A1), ete., but

the covariance of the values of O(#;) when 4 is varying within the j-th time step when ¢q is chosen randomly to
start a measurement period.
Considering lastly that 1) there is no covariance between AQ and e (measurement errors are not correlated with

discretisation errors) and ii) there is no covariance between measurement errors (only random errors are
considered, systematic errors have been corrected), eq. 32 can be simplified and re-written as follows:

n-1 n
V()P = Sulgte )P+ Sula0u )P +23 Su(a0t A0
j=1 j=1 J=lk=j+1 eq. 33
A) (B) ©

To simulate a real measurement process, discrete hydrographs have been generated. An example is shown in
Figure 3.5 with Az =30 min and random errors e(#;) sampled from normal distributions with mean values equal

to zero and standard deviations equal to 7.5 % of the true values O(#), 1.e. u(q()) = 0.075x0(t)). At is large (30
min) only to facilitate the legibility of Figure 3.5. V(7) is equal to 2967 m3.
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Figure 3.5: Example of discrete measurements with At = 30 min and relative standard uncertainties
in g values equal to 0.075%q. For comparison, the true signal is represented by the dashed line
eq. 33 contains 3 terms:
- A corresponds to the random errors in measurements: A = 1541 mo.
- B corresponds to the variances linked to the discretisation: B = 15409 m®.
- C corresponds to the covariances linked to the discretisation: C =-7291 m9.
The total uncertainty in V,(7) is then given by u(Ve(T )):\/ A+B+C =98 m3. With an enlargement factor
ke =2, Vo(T) + ko u(Ve(T)) = 2967 £ 196 m3. The corresponding interval is [2771; 3163].
The contribution of the discretisation to the total uncertainty is equal to (B+C)/(A+B+C) = 84 % of the total
uncertainty, while the contribution of random errors is only 16 %.
3.3.2 Monte Carlo estimation

Monte Carlo simulations have been run in order to illustrate a more detailed analysis of the uncertainty in V(7).
The first step will consider only discretisation. The second step will consider both discretisation and
measurement uncertainties as sources of uncertainty in V(7).

3.3.2.1 Effect of discretisation

This step aims to answer the following question: how discretisation of the true hydrograph Q(f) with a time step
At may affect the estimate V(7)? Measured values g(#j) are considered with no uncertainties.

Fourteen time steps (s = 1:14) have been analysed, respectively equal to 1, 2, 5, 10, 15, 20, 30, 45, 60, 90, 120,
180, 240 and 360 minutes. Long-time steps have been tested only for illustration purposes as such high values
are not realistic for discharge measurements. For each value At, the starting time 7 is randomly set within the
first time step [0, Az]. One million (N = 106) simulations of 7y have been generated by

losi = OALg eq. 34
with o; a random number between 0 and 1 and i the Monte Carlo simulation index i = 1:N.

As aresult, N values of V,(T) are calculated for each time step At :

mS
Ve(D)si =| > Oltosi + (k=D)AL ) |At; eq. 35
k=1
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with mg the number of measured discrete values for each time step Az

1440 36
AL eq.

Results are given in Figure 3.6. On each box plot, the central horizontal line indicates the median value, the
central box is delimited by the first (bottom) and third (top) quartiles, and the extremities of the dashed lines
represent the minimum (bottom) and maximum (top) values. Mean values, standard deviations and shortest 95 %
coverage intervals are given in Table 3.3. All mean values are equal to 3000 m3.

For all time steps from 1 to 20 minutes, the discretisation has a negligible effect: V(7) is always precisely
estimated by V(7). For time steps ranging from 30 to 60 minutes, a significant dispersion of the values is
observed. For example, for Af = 45 min, the mean is equal to 3000 m3, the median is equal to 2976 m3, but
extreme values are respectively 2767 et 3273 m3, i.e. -7.8 % and +9.1 % compared to the mean. In practice, this
level of precision is acceptable. For time steps greater than 60 min, the dispersion increases dramatically and
becomes more asymmetrical. For Az = 240 min, the median is equal to 2532 m3 (-15.6 %) and extreme values
are respectively 2399 m3 (-20.0 %) and 5718 m3 (+90.6 %).
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Figure 3.6: Effect of discretisation on the estimate Vg(T)

3.3.2.2 Effect of discretisation and random errors

In this second step, the discrete measured values are no longer considered as true values but are affected by
random errors e(#;) sampled from normal distributions with mean values equal to zero and standard deviations

equal to 7.5 % of the true values O(f), i.e. u(q(t)) = 0.075x0(¢), as in section 3.3.1. Consequently, one
calculates

mS
Ve(T)gi =| Y. Oltgsi + (k= DAt )x (1+0.075x ey, ) |At eq. 37
k=1

with eg;i the random error for Qg = Q(to si T (k—1D)At; )

Five millions (N = 5x106) simulations have been run to ensure stable boundaries of the 95 % coverage intervals
for all values of At. Results are shown in Figure 3.7. Mean values, standard deviations and shortest 95 %
coverage intervals of V(T) are given in Table 3.3.

Compared to the previous step (discretisation only), standard deviations slightly increase due to random errors in
measured values. For time steps of less than 20 min, uncertainty due to discretisation is either negligible or very
low and the uncertainty due to random errors is the most important contribution to the uncertainty in V(7).
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However, the 95 % coverage intervals are very narrow (maximum +2 % of the mean value). For time steps equal
to or greater than 30 min, the discretisation is the most important source of uncertainty in V(7). When the time
step increases, mg decreases and the contribution of random errors in a decreasing number of measured values
increases in absolute value. But this increasing contribution to the total uncertainty in Vy(7) increases less
rapidly, relatively, than the contribution due to the discretisation.

In Table 3.3 column E, the line corresponding to At = 30 min indicates that u(V,(7)) = 99 m3. This value is
similar to the standard uncertainty of 98 m3 calculated by means of the type B approach in section 3.3.1. The
95 % coverage interval in column F is [2827; 3170], to be compared with is [2771; 3163] obtained in section
3.3.1: both intervals can be considered equivalent (difference in lower and upper boundaries are resp. -2 % and -
0.2 % with the interval in column F as the reference interval). However, it appears that 95 % confidence intervals
calculated with the type B approach and the 95 % coverage intervals calculated with MC simulations will no
longer be equivalent when Af increases, because of the asymmetrical distribution of V(7). In this case, MC
simulations are a better and less biased approach.

The MC method illustrated in this section for the calculation of a cumulated volume will be further developed
for a more critical issue: the calculation of pollutant loads when discrete samples are taken in sewer systems for
laboratory analyses. Discrete sampling strategies will be compared to on line continuous measurements (e.g.
turbidity) collected with short time steps (e.g. 2 minutes): in this case, on line water quality time series will be
considered as the true reference signal and uncertainties due to both discrete sampling and laboratory analyses
will be assessed.
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Figure 3.7: Effect of both discretisation and random errors on the estimate Vg(T)

Table 3.3: Standard uncertainties in Vg(T) for two cases: i) with discretisation only (columns A to C),
i) with both discretisation and random errors (columns D to F)
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discretisation only discretisation + random errors
(A) (B) ©) (D) (E) (F)
At mean u(Vo(T)) 95 % mean u(Vo(T)) 95 %
(min) | Ve(D) (m3) coverage Vo(T) (m3) coverage
(m3) interval (m3) interval
1 3000 <107 [3000; 3000] 3000 7.6 [2985; 3015]
2 3000 <107 [3000; 3000] 3000 10.7 [2979; 3021]
5 3000 <10 [3000; 3000] 3000 17 [2967; 3033]
10 3000 <107 [3000; 3000] 3000 24 [2953; 3047]
15 3000 6 [2993; 3009] 3000 30 [2941; 3059]
20 3000 <107 [3000; 3000] 3000 34 [2933; 3066]
30 3000 90 [2867; 3120] 3000 99 [2827; 3170]
45 3000 178 [2767; 3269] 3000 185 [2723; 3317]
60 2999 154 [2833; 3292] 3000 165 [2767; 3338]
90 3000 350 [2534; 3646] 3000 357 [2456; 3672]
120 3000 494 [2500; 3993] 3000 501 [2388; 3999]
180 3000 721 [2427; 4621] 3000 728 [2277; 4606]
240 2999 904 [2399; 5205] 3000 911 [2208; 5192]
360 3000 1082 [2360; 5533] 3000 1092 [2143; 5569]

3.4 APPENDIX TO EXAMPLE 1

3.4.1 Estimation of standard uncertainties in R, hand U

Note: the calculations presented in this section are only given as additional information in order to illustrate how
various approaches can be used in uncertainty assessment. Other and/or improved approaches can also be
applied.

3.4.2 Uncertainty in R

As it is easier in practice to measure the pipe diameter, the pipe radius R has been calculated from n =4
measurements of the diameter D carried out at various positions in the pipe cross section, as given in Table 3.4.

Table 3.4: Four measurements of the pipe diameter

D (mm)
1002
1000
997
1002

The mean value D =~ 1000.25 mm and thus the mean radius R 25/2 = 500.125 ~ 500 mm. The standard
deviation s of the four values of D is equal to 2.3629 mm. The 95 % confidence interval (with oo = 0.05) for the

mean value D is given by

= <D<D+1y (V)=

\/; = \/; €q. 38

where ¢ is the Student value for v = n-1 = 3 degrees of freedom: # = 3.1824.

D—-t_p/5(v)

Assuming that the above 95 % confidence interval can be re-written

D-2u(D)< D < D+2u(D) eq. 39
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the standard uncertainty u(D) is determined by

— 1 s 1 2.3629
uDy=—|t,_,,,(V)—=|=—| 3.1824——— | = 1.8799 mm ~ 2 mm. eq. 40
2[1 al? \/; 2 ﬁ q

Then u(R) = u( D /2 = 0.9399 mm ~ 1 mm.

For calculations in this paper, one uses R = 0.5 m and u(R) = 0.001 m.

3.4.3 Uncertainty in h

The water level / has been measured with a 0-2 m piezoresistive sensor. The sensor was previously calibrated in
the laboratory. Details are presented in Bertrand-Krajewski and Muste (2007): only key results are given in this
appendix. Reference water levels have been measured in a Perspex column (height 3.5 m, diameter 0.2 m) with a
class II certified 4 m long metallic meter, with a standard uncertainty less than 0.5 mm. For each reference water
level, considered as a standard value, 12 repeated measurements have been made with the piezoresistive sensor.
The data are given in Table 3.5.

Table 3.5: Piezoresistive sensor calibration data. xj = reference value, yjk = repeated measurements with
k = 1:12, yi mean and sj = respectively mean value and standard deviation of the 12 yji values. All values in mm

X Yo Yie Y Yu Ys Yie Y Yis Yie Yo Yiur Yiaz | Yimean Si

399|399 400 400 400 400 400 400 399 399 399 399 399 | 399.50 | 0.5222
7991800 800 800 800 800 800 800 800 800 800 800 800 | 800.00 |0.0000
1200|1201 1201 1202 1202 1202 1202 1201 1201 1201 1201 1201 1201|1201.33]0.4924
1600|1601 1601 1601 1601 1601 1602 1600 1600 1600 1600 1600 1600 1600.58| 0.6686
200012002 2002 2002 2002 2002 2002 2001 2001 2001 2001 2001 2001|2001.50] 0.5222

Ordinary least squares regressions have been made and compared by means of F-tests. The resulting optimal
calibration function, with a residual variance s;2 = 0.344398, is

y=a+bx=0.508854+1.000395 x eq. 41

It is then possible to transform any measured value yj, into the corresponding most likely true value of the water
level xo, and also to evaluate its standard uncertainty u(xp). Consider one single measured value y, = 701 mm.
The most likely true value x, is calculated with eq. 42:

Yo—a _701-0.508854
b 1.000395

Xy = ~700.2 mm eq. 42

The standard deviation s(x,) is due to two independent contributions: i) the uncertainty in the measured value yy,
and ii) the uncertainty in the calibration curve expressed by the uncertainties in both coefficients s(a) and s(b).
s(x) is calculated by:

2 T2 _ 2
(x)? = 21_2 L1, (-0’ | 0344397 {ﬂ (700.2 -1199.6)

N =7 |= + =0.3543 eq. 43
N Sm(x;-x? | (1.000395) (60 19228814.4 J q
i

Accordingly, adopting u(x,) = s(xo) produces u(x) = 0.6 mm. The 95 % confidence interval (enlargement factor
equal to 2) for xg is then given by [xo-2u(xo), X¢+2u(xo)] = [699.0, 700.4]. The final result is expressed x, = 700.2
+ 1.2 mm.

The above result means that the sensor standard uncertainty, for y = 700 mm, is equal to 0.6 mm, under stable
laboratory or calibration conditions.

However, in the field (e.g. in a real sewer), the in sifu measurement standard uncertainty is greater than 0.6 mm
because the water level is not perfectly flat and stable but uneven with at least small waves, the free surface is
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not strictly horizontal due to turbulence and secondary flows, the exact position of the sensor in the pipe section
is not known with a very high precision, etc. An empirical global estimate of this additional sources of
uncertainty, based on visual observations made in various measurement locations in sewers, is evaluated to be
about u, =5 mm (see e.g. Bertrand-Krajewski et al., 2000, p. 223). In some cases, the above small deviations
from flat free surface could be more significant, leading to significant biases and errors, and it may be necessary
e.g. to use a set of sensors instead of a unique one to estimate the average water level. Nevertheless, too complex
hydraulic conditions shall be avoided for flow measurements: alternative locations and even local reconstruction
or modification of the infrastructure may be necessary. A special attention to local hydraulic conditions, sewer
geometry, sensor location, and to resulting errors and uncertainties is mandatory.

As a consequence of the above indication for this example, the in sifu measurement standard uncertainty u(h),
with the above sensor, is assumed to be equal to

u(h) = Ju(x0)? +u,2 =v/0.62 +5% =036+ 25 ~ 5mm eq. 44

For calculations in this paper, one uses £ = 0.7 m and u(%) = 0.005 m.

During storm events and high flows, based on in situ visual observations, u(k) may be higher, up to 15 mm. This
indicates clearly that, if the water level sensor is of good quality with low uncertainties, the main source of
uncertainty for in situ measurement is due to the natural turbulence and instabilities of water surfaces.

If detailed information is available, it could be possible to propose a simple empirical function to estimate u(k) as
a function of / or of the discharge Q.

3.4.4 Uncertainty in U

The mean flow velocity U is calculated from the information provided by the Doppler sensor. The Doppler
sensor, when located on the pipe invert, is determining the mean velocity V' (m/s) within a conical volume
characterised by three parameters: its angle of inclination related to the horizontal line, its angle of aperture, and
its length. The two first parameters are given in manufacturer’s specifications. The length, which determines the
volume explored by the sensor, is not fixed and depends on factors like e.g. the variable suspended solids
concentration or the ultrasound emission frequency. As the sensor explores the conical volume which is only a
fraction of the cross-section, and as velocity profiles are not uniform through the cross section, the mean velocity
U (m/s) through the cross section is usually calculated by U = kV, where £k is a correction factor to account for
geometry, flow regime, velocity profiles, etc.

Theoretically, u(U) could be evaluated from u(¥) and u(k) and by using the law of propagation of uncertainties.
In practice, this is much more complex, as u(¥) and u(k) are not known and difficult to assess. On the one hand,
u(¥) is not constant and depends on the discharge conditions (pipe geometry, flow regime, depth of flow, etc.).
Manufacturers may provide some values for u(¥), but they are only indicative and do not necessarily correspond
to real conditions of use in sewers. Indeed, in most cases, they are estimated either 1) by moving the sensor with
a known velocity over a basin with still water, like for calibration of propeller velocity meters, which does not
correspond to realistic vertical velocity profiles (see Bertrand-Krajewski et al., 2000, p. 371), or ii) by doing
measurements under controlled laboratory conditions for limited circular pipe conditions with clean water, which
cannot be transposed to real sewers. On the other hand, £ also changes with flow conditions (geometry, depth of
flow, etc.) and estimating its uncertainty means than one has another and more precise method to estimate the
discharge. These difficulties led us to use a more conservative and empirical approach.

A first attempt consisted to compare, in a real sewer, the mean velocity along a vertical profile measured with a
calibrated propeller velocity meter and the mean velocity V' given by a floating Doppler sensor oriented toward
the pipe invert (Bertrand-Krajewski et al., 2000, p. 374). Such experiments have been repeated later on
(unpublished results) with a calibrated punctual electromagnetic velocity meter OTT Nautilus C2000. As these
measurements are time consuming and cannot be easily carried out and repeated under various flow conditions
in sewers, we concluded that, as an empirical conservative first approximation, u(U) is around 0.05 m/s, for
some circular or egg-shape man-entry sewers, and only for water levels between 0.15 and 0.4-0.5 m (for security
reasons, it is not possible to carry out measurements in sewers with higher water levels occurring during storm
events).

Obtaining more accurate in situ estimations of u(U) requires independent, reliable and precise discharge
measurements. More recently, we applied both salt and Rhodamine WT repeated tracing experiments, with one
second time step continuous measurements of electric conductivity and fluorescence respectively, with calibrated
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sensors. These experiments may provide measurements of the discharge O with an enlarged uncertainty of less
6 % (preliminary results are given in Lepot et al., 2010). Knowing Q and the water level / also measured during
the tracing experiments, one can then derive U and its uncertainty. Repeated tracer experiments for various water
levels and flow conditions will allow better estimating of u(U) than the previous comparisons with velocity
meters.

3.4.5 Matlab source code for MC calculations

0.5 + 0.001*randn(1e6,1);

0.7 + 0.005*randn(1e6,1);

0.8 + 0.05*randn(1e6,1);
R.~2.*(acos(1-h./R)-(1-h./R) .*sin(acos(1-h./R))).*U;
result = 1C95min(Q)

O CIS X

with IC95min the following function
function y = 1C95min(V)
% this function gives a horizontal vector y = [m pl p2]
% with m the mean value and pl and p2 the boundaries of the shortest
% 95% coverage interval of the vector V
J = (0:0.01:5)";
m = prctile(V,j+95)-prctile(V,}J);
[~. bl=min(m);
y [mean(V) prctile(V,j(b)) prctile(V,j(b)+95)];
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4. EXAMPLE 2: ESTIMATION OF TSS AND COD POLLUTANT LOADS FROM
CONTINUOUS TURBIDITY MEASUREMENTS IN TWO URBAN SEWER
SYSTEMS

4.1 INTRODUCTION

This example is less detailed in terms of algebra and calculations compared to the previous example, as they are
similar in their principle, but more complete in terms of application and operational results. It presents some key
methodological aspects for continuous data acquisition and data processing. Their application is illustrated for
two experimental urban catchments in Lyon, France: i) Chassieu, 185 ha, industrial area with a stormwater
separate system, ii) Ecully, 245 ha, residential area with a combined system, respectively with 263 and 239 storm
events recorded (rainfall, discharge, turbidity time series) in the period 2004-2008 with a 2 minute time step.
This example is copied, with very minor modifications, from Bertrand-Krajewski and Métadier (2010).

The methodology includes the following main steps:

1. calibration of sensors and determination of calibration functions

2. data correction and estimation of uncertainties in corrected data

3. automated data pre-validation by application of a set of parametric tests

4. final data validation by an operator

5. calculation of discharge, TSS and COD concentrations, and their uncertainties

6. calculation of storm event TSS and COD loads and of their uncertainties, including the dry weather
contributions in case of a combined sewer system.

Steps 1 to 4 have been previously described in other papers (see Métadier and Bertrand-Krajewski, 2011). Steps
5 and 6 are briefly presented in the following paragraphs.

4.2 CALCULATION OF DISCHARGE AND CONCENTRATIONS OF TSS AND COD

Various methods can be used to calculate discharge including: (i) Manning-Strickler applied to water level, (ii) a
water level-velocity relationship in cases where it is locally known, (iii) a locally established rating curve or
(iv) a combination of water level and flow velocity measurements. Standard uncertainties in discharge can be
calculated by means of the GUM or MCM approaches. TSS and COD concentrations are calculated from
correlation functions for turbidity, for both dry and wet weather periods. Correlation functions are determined
either by the ordinary least squares regression or the Williamson regression, preferably. Details are given in
Bertrand-Krajewski et al. (2007) and Torres (2008).

4.2.1 Event load calculation

TSS and COD event loads are calculated with their standard uncertainties. This includes two sub-steps which are
described hereafter: (i) the automated determination of the duration of the hydrologic event and (ii) the
calculation of the event load itself between the determined storm event limits.

The duration of the hydrologic event comprises (i) the storm event duration itself, i.e. the time between the
beginning and the end of the rainfall event as measured with the rain gauge and ii) the time needed for a set of
variables (discharge, conductivity, turbidity) to reach again the values they had before the storm event started.
The identification of the beginning 74 and the end # of hydrologic events is based on 3 criteria: (i) discharge
threshold, (ii) minimum period between 2 successive independent events and (iii) the maximum duration
between the beginning of the storm event and the rising of the discharge in the sewer. The identification of the
end of hydrologic events is more complex than the identification of the beginning as, in some cases, pre-event
dry weather values of conductivity and/or turbidity are not reached again even many hours after the end of the
rainfall event.

Event loads are calculated by integration over the storm event duration of the continuous discharge and TSS or
COD concentration time series:

N
My = (z CX[Q[JAt eq. 45

i=1
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where My is the event load of pollutant X (kg), Cy; is the concentration of pollutant X (kg/m’) at time step i, Q;

is the discharge (m’/s) at time step i, At is the duration (s) of the time step, i is the index, and N is the number of
time steps corresponding to the duration of the hydrologic event: N = (17— 1g)/At.

Standard uncertainties in TSS and COD pollutant loads are calculated by means of the LPU taking into account
discharge and concentration uncertainties.

4.2.2 Determination of dry weather contribution during storm events

Most models of storm weather pollutant loads in combined sewer systems are based on the assumption that the
total storm event load is the sum of i) the DW (dry weather) contribution that would have been observed during
the event duration if no event had occurred and ii) the WW (wet weather) contribution including surface runoff +
possible erosion of deposits accumulated in the sewers. The DW contribution during a storm event can be
estimated from turbidity time series.

In addition to eq. 45, it is assumed that:

My=My py+My wy eq. 46

V=Vpw +Vyw eq. 47

with Mx py the DW contribution, My jyy the WW contribution to the total mass My, V' the total event volume,
Vpw the DW volume during the storm event and Vyy the WW volume generated by the storm event.

My pw is the pollutant load that would have been measured if no storm event had occurred: by definition, it
cannot be measured and should be estimated. The proposed method to estimate My pyy consists to determine the
most likely DW discharge and turbidity time series (i.e. DW signals) compatible with the DW time series
measured after and before the observed storm event. This most likely DW signal, named hereafter the reference
signal, is chosen among available measured DW days which are close to the day during which the storm event
occurs. The two steps are the following ones: i) test of several DW signals by juxtaposing them to the storm
event signal and ii) comparing the values and the dynamics of the two signals on common DW periods of some
hours on both sides (before and after) of the storm event limits: these periods are named the fitting periods. The
DW signal having the most similar dynamics over the fitting periods is selected to estimate My pp. In other
words, it is assumed that if a tested DW signal is similar to the DW signal measured before and after the
considered storm event, it is also an appropriate estimation of the un—measurable DW signal during the storm
event. Possible alternative solutions to the above data base analysis include e.g. dry weather forecasting
techniques, with a specific analysis of uncertainties.

The method is illustrated Figure 4.1, where four signals (fitting periods) A to D (dotted lines) are compared with
the dry periods before and after a storm event. The most similar signal over the fitting periods is signal C, which
is consequently applied to estimate the DW signal during the storm event. This approach is used for both
discharge Q and turbidity T signals.

The DW signals to be tested are not chosen randomly but according to a pre-established DW days classification
(see paragraph 4.4). The selected reference signal shall satisfy the following criteria: i) both discharge and
turbidity series are available without any gaps, ii) it must be long enough over the fitting periods to ensure a
reliable comparison, iii) it is not necessarily an entire DW day as long as the fitting periods are fully covered and
iv) it can be composed of several DW days in case the storm event is occurring over more than one day (e.g.
weekdays and weekends.

In case reference and measured signals are comparable over the fitting periods in terms of dynamics but not in
terms of absolute values, the reference signal can be translated by applying a simple mathematical signal fitting,
independently for discharge and turbidity. It is based on a least squares minimization of the distance between the
two signals, by ignoring extreme distances that correspond to random peaks (especially for turbidity). As for
dynamics comparison over the fitting periods, the need for translation is visually evaluated by the operator, with
some possible degree of subjectivity. However, based on our experience with long continuous time series, the
reference signal translation is rarely required, given measurements from rather close DWDs are usually
available. The fitting may be necessary in case of long term gaps in the continuous series or long rain periods,
for which no adequate DW periods are available.
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Mx pyis then calculated from the reference signal at each time step 7 during the storm event duration:

tr_ow

MXfDW =At- Z CX;;DW 'QLDW eq. 48

=ty pw

with Q; pyy the reference signal discharge, Cx; py the reference signal concentration of pollutant X computed
from the signal reference turbidity 7urb; pw, and 7y py and & pyy the reference signal starting and ending
times corresponding to the storm event limits 77 and #£.

QorT

D
- 7’
— N
P time
fitting storm fitting g
period 4 event b period

Figure 4.1: Example of estimation of the most-likely dry weather contribution during a storm event

The standard uncertainty u(My pj) is then calculated by means of the LPU:

tr pw
”(MXJ)W )2 = A ( Z Qz;DW2 '”(CXz;DW )2 + CX:;DWZ '”(QfDW)Z] eq. 49

i=ty pw
with u(Cp; pw) and u(Cx; pyw) the standard uncertainties at time step 7 resp. for discharge and concentration of
pollutant X of the reference signal.

Compared to total event load uncertainty, the DW contribution uncertainty includes an additional source of
uncertainty which is related to the DW contribution estimation method itself, i.e. the error due to the fact that the
reference signal is substituted to the true but unknown DW signal. Thus, the uncertainty of the substituted
discharge and turbidity signals at each time step i of the signal reference include both the measurement
uncertainty u(Q; pw m) and u(Turb; pw ) and a substitution uncertainty u(Q; pw subs) and
u(Turb; pw subs)- Under the assumption that substitution uncertainties are normally distributed:

u(Q, pw ) = ”(QLDWJ)Z + u(QiiDWisubs)z eq. 50
”(Turb;DW )2 = u(T”rb,;DWJn)z + u(TurbiiDWixubs)z eq. 51

i

More details about uncertainties in substituted values are given in Métadier and Bertrand-Krajewski (2010b).
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4.3 APPLICATION TO THE CHASSIEU CATCHMENT WITH A SEPARATE SEWER SYSTEM

The above methodology has been applied to the 185 ha Chassieu catchment. It is drained by a separate
stormwater sewer system which has sensors at its outfall sewer to continuously monitor water level and water
quality indicators (turbidity, conductivity, pH and temperature) with a 2 minutes time step. Water quality
indicators are not measured directly in the sewer but in a monitoring flume continuously supplied by a 1 L/s
peristaltic pump. Five years of data have been collected for the period 2004 -2008. All sensors are calibrated
twice in a year. A variable variance was applied to turbidimeters because calibration tests revealed that the
variance is significantly higher beyond 1000 NTU. In sifu standard uncertainties have been estimated to be equal
to 7.5 mm and 10 % of the measured value respectively for water level and turbidity values. For automatic event
identification, data from the nearest rain gauge were used. Other criteria were set as follows: discharge threshold
=4 L/s, minimum duration between 2 successive events = 4 hours, maximum duration between beginning of
storm event and rising discharge = 6 hours.

Figure 4.2a and Figure 4.2b shows respectively the Turbidity-TSS (left figure) and Turbidity-COD (right figure)
correlation functions for wet weather conditions. Both are second order polynomial functions determined by
means of Williamson regression to account for uncertainties in both variables (turbidity and TSS or COD). Grey
areas correspond to 95 % confidence intervals in estimated TSS or COD concentrations. It is important to note
that both functions have been established with samples collected during various storm events covering a large
measurement range (respectively 0- 680 NTU corresponding to 0- 1000 mg/L of TSS and 0-800 NTU
corresponding to 0 - 800 mg/L of COD). This is important to ensure that the correlation functions are applicable
for various conditions and without undue extrapolation.

In 2005, 33 storm events have been monitored in Chassieu. For each event, TSS and COD event loads have been
calculated, with their 95 % confidence intervals. The results are shown in Figure 4.2c: black and white thick bars
represent respectively the TSS and COD loads for the 33 events. Each thick bar is completed with a vertical thin
bar segment representing the 95 % confidence interval of the event load. The variability of the event loads is
very significant, with values ranging typically from quite small to 400-500 kg of TSS or COD per event. The
event number 25 shows extremely high loads compared to all the other ones. A further analysis of these 33
events loads (results not shown here) has indicated that there was no correlation between events loads and basic
event characteristics like rainfall duration, intensity, and antecedent dry weather period or rainfall return period.
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Figure 4.2: Example of results for the Chassieu catchment: (a) Turbidity-TSS and (b) Turbidity-COD correlation
functions, (c) TSS (in black) and COD (in white) event loads in 2005 with 95 % coverage intervals
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4.4 APPLICATION TO THE ECULLY CATCHMENT WITH A COMBINED SEWER SYSTEM

The methodology has also been applied to the 245 ha Ecully catchment drained by a combined sewer system.
Three clearly distinct DW daily pattern classes were identified among the available 180 DW days recorded in
2007-2008: 1) class 1: weekdays (Monday to Friday) without school holidays, ii) class 2: weekends (Saturday
and Sunday) and weekdays with general public holidays and iii) class 3: weekdays (Monday to Friday) with
school holidays. The three classes represent respectively 55 %, 22 % and 23 % of the 180 DW days (resp. 99, 40
and 41 DW days). The three classes correspond to calendar percentages over the period 2007-2008 of 41, 32 and
32 %, evidencing a satisfactory representativeness of the available DW data. In order to analyse the DW pattern
variability, mean discharge and turbidity profiles for the period 2007-2008 were computed for each class and for
all classes together, with standard deviations and coefficients of variation computed at each time step of the
profiles (720 values per day). 5 % - 95 % percentile intervals and distributions of residuals (distances from the
each DW day value to the mean profile) were also computed. Results are summarised in Table 4.1 and illustrated
in Figure 4.3 and Figure 4.4 resp. for class 2 and for all classes together (named hereafter class 4).

The results are rather similar for all classes. Residuals are approximately log-normally distributed. The computed
5% - 95 % percentile intervals are comparable for the four classes, with larger values for high flow periods
around 10:00-12:00. Dispersion is significantly higher for turbidity with mean coefficients of variation around
30-35 % compared to 20-25 % for discharge. Moreover 5 % - 95 % percentile intervals are less smoothed for
turbidity, which is explained by the random turbidity peaks observed during the day especially during high flow
period at the end of morning and evening peaks. This trend is even more pronounced when results are analysed
at 2 min time step. Comparable orders of magnitude of the variability for both discharge and turbidity signals
have been observed by Lacour (2009) in two urban combined catchments in Paris, France.

Table 4.1: Mean standard deviations and mean coefficients of variation
of the mean discharge and turbidity along the DW profiles for classes 1 to 4

Mean standard deviation Mean coefficient of variation
Class Discharge Turbidity Discharge Turbidity
(L/s) (NTU) (%) (%)
Class 1 7.05 55.23 21.86 31.80
Class 2 6.52 51.31 22.69 29.25
Class 3 9.46 59.33 28.6 36.39
Class 4 791 60.18 23.75 34.66
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Figure 4.3: Class 2 mean DW discharge and turbidity patterns,
with 5 % - 95 % percentiles interval (left) and residuals distribution (right)
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Figure 4.4. Class 4 mean DW discharge and turbidity patterns,
with 5 % - 95 % percentiles interval (left) and residuals distribution (right)

TSS and COD event loads calculation have been calculated for the 239 storm events measured in Ecully in 2007-
2008. Constant substitution uncertainties were applied, respectively equal to 3.33 L/s and 47.0 NTU for
discharge and turbidity. As an example, Figure 4.5 illustrates the storm event dated Friday 31 October 2008,
which is a class 3 DW day. The rainfall depth is 10.7 mm. Event starting and ending times are respectively 12:28
and 20:28. The selected reference signal corresponds to Tuesday 4 December 2008, which is available in the DW
data base. The left graphs represent, from top to bottom, the rainfall intensity, the conductivity, the discharge and
turbidity reference signals measured on Tuesday 4 December 2008, and the measured discharge and turbidity
signals measured on Friday 31 October 2008. The right graphs represent, from bottom to top, COD and TSS
mass fluxes (in kg/s) computed from the TSS-turbidity and COD-turbidity correlations, and event pollutant loads
with the black, grey and white bars representing respectively the total event loads, the wet weather load
contribution and the dry weather load contributions (in kg). For discharge, turbidity, fluxes and event loads,
95 % confidence intervals are computed with the LPU. Event runoff volume, TSS and COD loads with WW and
DW contributions and their 95 % confidence intervals are summarized in Table 4.2.
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Figure 4.5: lllustration of the methodology for the storm event dated 31 October 2008
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Table 4.2: Results for the storm event dated Friday 31 October 2008

Friday 31 Oct. 2008 Total WW contribution DW contribution
Runoff 6323 +/- 26 m’ 4645 +/- 62 m’ 1718 +/-32 m’
TSS load 729 +/- 22 kg 540 +/- 26 kg 189 +/- 13 kg
COD load 1324 +/- 42 kg 967 +/- 46 kg 356 +/- 20 kg
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5. EXAMPLE 3: UNCERTAINTY EVALUATION OF MULTI-SENSOR FLOW
MEASUREMENT IN A SEWER SYSTEM USING MONTE CARLO METHOD

The following case study is a more detailed example of application of MCM to discharge measurements in a
sewer system. The MCM is used hereafter to carry out the evaluation of the measurement uncertainty,
considering its inherent capacity to deal with non-linear and multi-stage mathematical models. Influence of
geometric conditions and other relevant parameters in the quality of measurements is discussed. The study was
developed within the context of a specific sewer system, using a particular measurement system, from which
measurement data was gathered. This example is copied, with very minor modifications, from Ribeiro et al.
(2010).

5.1 INTRODUCTION

Measurement of flow in sewer systems is a complex task considering the dynamic behaviour of the measurand
and the effects resulting from non-ideal conditions of operation (Larrarte, 2006). When flow measurements are
regularly used for managing sewer systems, performance of the measurement system and the quality of
measurement results becomes critical both to daily operation and to decision making processes within the utility.

Different solutions can be adopted in order to measure flow in free surface flow conditions in sewers (Bertrand-
Krajewski et al., 2000). One of the most common methods is the velocity-area, usually using multi-sensing flow
meters composed by a combination of sensors for level and velocity measurement, often mounted in stainless
steel rings or bands, to be fitted in the inner surface of sewer pipes. The flow can be calculated from
measurement of different quantities, namely, level and velocity, by applying the continuity equation. The slope-
area methods, using the Manning-Strickler formula or similar formulae, are sometimes used in conjunction with
the velocity-area method to ensure redundancy. In both cases, calculation of the flow involves the use of non-
linear mathematical models in a multi-stage system. Additionally, in general, these methods assume uniform
flow conditions often difficult to ensure in actual measurement sites. For the purpose of this example, only the
continuity equation is considered.

The development of the uncertainty budget requires the evaluation of contributions due to different uncertainty
sources, which can be grouped in eight major factors: the measurand; the instrumentation metrological
performance; the calibration; the sampling; the interface; the user; the environmental conditions; and the data
processing.

In the specific case under study, considering the technological development of instrumentation and data
processing software, the non-ideal conditions of the measurand realization (i.e. non-uniform flow) appears to be
an important contribution.

The analysis of the instrumentation assembly and its installation in situ shows the relevance of a number of
geometric requirements: the placement of probes, measuring angles and cross-sectional geometry. In addition,
hydraulic conditions associated with the inner pipe characteristics (symmetry conditions, wall roughness,
hydraulic jump, drops, curves and infrastructure irregularities) can generate different types of waves, energy
losses and other disturbances contributing to non-uniform flow.

In order to study the sources of measurement uncertainties and their effects, a second aim of this example is to
obtain an assessment of the conditions that make the contributions due to geometric quantities dominant in the
context of the uncertainty budget.

5.2 METHODOLOGY

Flow is a quantity measured indirectly, usually obtained by the measurement of other quantities and applying
mathematical models, the continuity equation being one of the most common. The continuity equation, as given
by eq. 52, is a functional relation that yields the volumetric flow rate, Q, as a function of the mean velocity, U,
and the cross sectional area of flow, 4, according to the principle of conservation of mass.

0=U-4 eq. 52

In practice, the input quantities of this mathematical model, obtained by indirect measurement of other
measurands, create a multi-stage metrological problem with several input and output quantities, and functional
relations between them, to reach the final output measurand, Q.
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Figure 5.1: Input quantities and functional relations to obtain volumetric flow rate
Table 5.1: Set of quantities applied
Symbol Description
Cusiw Ultrasound velocity in water (at reference conditions)
fs Emitter frequency
B Angle of sound propagation
Af Doppler frequency shift
U, Peak flow velocity
C, Peak to average flow velocity factor
U Average flow velocity
Cosair Ultrasound velocity in air (at reference conditions)
Lyaini Wave time of transit
i g.q Displacement, estimate and average values
D Diameter of pipe (at flow depth section measurement)
d, Displacement offset of the acoustic emitter
dh,, Flow depth variation in the measurement surface
by Flow depth (measured with acoustic us instrument)
Py D Pressure of fluid (water) and atmospheric pressure
g Gravity
Pu Density of water (at reference conditions)
h, Flow depth (measured with pressure depth instrument)
7, Radius of conduit (at the cross-section area)
A Cross-section “wet” area
80, Flow influence quantities related with the method and with computational processing
Y Volumetric flow rate

The flow through a given surface S is defined as the result of an integration of a velocity field over that target
surface. Thus, U is the average of the field velocities over S. The pattern of the velocity field spatial distribution
may vary significantly according to the type of flow (e.g. in completely filled pipes or free surface flow) and
local conditions. The best approximation to the average velocity U in a given flow should be obtained by
measuring velocities in a large number of points distributed over the target surface, S.

The measurement of U is often carried out by transducers that capture the effect of the velocities along a straight
line or, more realistically, along the conical dispersion of the beam (Edelhauser, 1999; Jaafar et al., 2009), by
assuming that certain flow distribution and symmetry conditions are well known and that yield feasible
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solutions. Then, the average velocity U is obtained from a measured value (which can be either a beam average
value or its maximum value) multiplied by an appropriate calibration factor.

The complexity of the relations established between quantities is presented in Figure 5.1, showing several stages
where some quantities are simultaneously output of some stage and input to the next stage. The complete set of
quantities used is described in Table 5.1, being based on the formulation presented in Figure 5.1.

The experimental performance of flow measurement in sewers implies that some influence quantities related to
the method deviations, dQ; , should additionally be taken into account in the mathematical model, as included in

(fs). This modification of the mathematical model (eq. 52) is required in order to evaluate the measurement
uncertainty. Both relations are in agreement if the average values of these quantities are null (as usually
expected).

The random variable flow depth, /., can be estimated from two different measurement approaches (Doppler
effect or fluid column pressure), allowing to have redundant information about system performance.

In order to test the proposed approach as a means for evaluating the flow measurement uncertainty, measurement
data from a large sewer system were used. This regional sewer system has circa 60 flow measurement locations,
and measurement accuracy constitutes an important issue since data is used for billing purposes. The
measurement approach used in most locations is based on the velocity-area method and the cross-section shape
on locations selected is circular (Figure 5.2 and Figure 5.3).

The information obtained allows to calculate estimates of the measurement uncertainty contributions and to
discuss the model sensitivity to different parameters such as those related with the geometric conditions.

Figure 5.3: Flow measurement device: detail of ultrasound device (four pairs) for flow depth measurement

In most of the measurement locations, mounting the instrumentation is made under adverse conditions, usually
in places where flow performance can be strongly affected by the geometry of pipes and by irregularities in
joints. Furthermore, in conditions where flow imposes strong impulses on the instrumentation, dislocations of
the instrumentation supporting ring causes permanent changes in the setup, dragged objects and debris might
damage the instrumentation, and sediment grease and oil accumulation can obstruct the sensors. These
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unpredictable events eventually identified during maintenance operations or data processing, can lead to
significant measurement errors. However, incorporation of these effects as contributions to measurement
uncertainty proves to be difficult. Thus, it is expected that the error sources are strongly dependent of local
conditions at each measurement location.

The evaluation of the measurement uncertainty contributions is based on the analysis of the variability of
average values obtained from several locations. The probability distributions were derived from the observation
of some variables during the measurement process, together with estimated values provided by the
manufacturers or by referenced bibliography

5.3 EVALUATION OF MEASUREMENT UNCERTAINTY USING MCM

Regarding the process used by the Monte Carlo Method (MCM) to perform the evaluation of measurement
uncertainties, the relations (mathematical models) of the multi-stage system are used directly, together with the
input data obtained by sampling from probability density functions (PDFs) of each input quantity. The
computation of the algorithm gives the propagation of distributions in order to obtain the output quantities PDFs
and their statistical parameters of interest (namely, measurands best estimates and variances).

The propagation of PDFs from one stage to the following is illustrated in Figure 5.4, assuming that the output
numerical sequence of one stage (with its own PDF) is taken as the input numerical sequence of the next stage,
while keeping the statistical properties (such as correlations) characteristic of the each specific random variable.
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Figure 5.4: Propagation of density probability functions in a two stage measurement system

Since the MCM can be applied in the absence of mainstream GUM requirements, such as symmetry of the input
probability functions (or others), the method proves to be especially suitable to be applied to non-linear
mathematical models.

Development of MCM numerical simulations is carried out by generating sequences of up to 10° values for each
quantity, depending on the required computational accuracy. The draws were based on the Mersenne Twister
uniform random number generator (Matsumoto and Nishimura, 1998 — this generator is implemented in various
software tools, e.g. Matlab) and the PDFs were obtained using validated methods like the Box-Muller
transformation and the inverse cumulative distribution function (CDF) method (Gentle, 2004). Tests to verify the
computational accuracy of the output PDFs were also made according with Cox et al. (2001) allowing
concluding that the numerical simulations provide robust and accurate solutions for the metrological problem
proposed.

In Table 5.2, the experimental input data and PDF parameters adopted are presented. Some observations to this
table are:
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a. The quantity u,y includes the contributions from input quantities presented in Figure 5.1 (mathematical
model f1) combined with the contributions due to the resolution, linearity and drift of the indication device.

b. The quantity ¢, 45 incorporates the temperature influence of + 0.17 % /°C and the influence of pressure of +
0.1 % of the readings.

c. The quantity related with the pipe diameter estimate includes the resolution effect of the measurement
instrument and the roundness error effect.

d. The quantity oh, includes surface wave effects.

e. The quantity dQgeom includes effects due to pipe slopes and other geometry constrains (based on the

instrumentation manufacturer information).
f. The quantity 0Qvyerfalls includes the geometric influence due to proximity to drops at entrance to downstream

manhole.
g. The quantity 6Qinst ring includes effects due to instrumentation ring setup and installation geometry.

h. The quantity 0comp includes effects due to computational process performed with modified off-the-shelf
software.

Table 5.2: Experimental input data and PDFs adopted

Random variables ~ PDF parameters  Units
U N(0.79;0.01) s
’ R (0.85; 0.95) adim.
Cosi R (340.1; 346.9) -1
e R (8.43;8.93) ms
D R (1793; 1803) mm
d, R (5,15) mm
Sh,, R (10; 20) mm
3Qgeom N(0; 0.0025-0) L-s!
3Quvertats /N(0; 0.005-q) L-s!
8Qins ring N(0; 0.005-q) L-s!
8Quump N(0;0.001-q) L.

Critical conditions such as backwater flow, very low and off-axis flow velocity components and their relation
with mean flow velocity were not considered given the difficulty to quantify the consequences on the
measurement due to these extreme effects. However, special care should be taken when selecting the
measurement locations to avoid large errors derived from this type of effects.

MCM simulations were carried out using Table 5.2 values as input parameters. The estimate of the measurement
result obtained for the output quantity, volumetric flow rate, including its standard uncertainty is

0, =(229.7+14.1)L/s eq. 53

and the related output PDF is presented in Figure 5.5.

Computation results confirm the significant advantage of using the MCM approach, since it allowed the
evaluation of measurement uncertainty despite the use of a nonlinear function, f,

2
A= L. {acos[l — h] - sin{aco{l - hJH eq. 54
2 r, r,

In fact, results are consistent, giving low computational accuracy values, as shown in Table 5.3.
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Figure 5.5: Output PDF of flow rate obtained for MCM n. 1

Table 5.3: Summary results for first set of MCM simulations

Quantities and parameters MCM Estimates

MCS 1 MCS 2 MCS 3
Volumetric flow estimate 229.7 L/s 2294 L/s 2292 L/s
Standard uncertainty 6.5 % 902 % 11%
Computational accuracy +0.15% +0.2 % +0.25 %
Skewness 0.04 - 0.007 -0.03
Excess kurtosis -0.50 -0.74 -0.84

5.4 SENSITIVITY ANALYSIS

The sensitivity analysis was developed in two ways aiming at comparing the influence of the several input
quantities on the result, in order to find those that can be considered dominant and to study the effect of the
geometric quantities uncertainties on the output flow measurement uncertainty.

Apparently, the output PDF has a Gaussian shape (Figure 5.5), which is the usually predicted. However,
detailing the statistical study, results show a deviation from normality, namely, due to the excess kurtosis
coefficient value of 0.50 (typical for a logistic distribution).

In order to study the behaviour of the output PDF and the relations with the several model parameters, a
sensitivity analysis focusing the measuring uncertainties was also carried out, allowing the identification of
critical parameters for the measurement uncertainty magnitude and the output PDF shape.

The sensitivity analysis clearly showed that the wave time of transit has the higher influence in the output
measurement uncertainty. To illustrate this fact, additional MCM simulations were carried out. Overall
simulations were done considering the typical standard uncertainties of £ 5-10° s (MCS n. 01), £ 8-10-5 s (MCS
n. 02) and + 1:10-4 s (MCS n. 03). Results summarised in Table 5.3 show that the increase of the standard
uncertainty causes an increase of both the skewness (to the right) and of the excess kurtosis coefficient, which
exhibits an increasing departure from the Gaussian shape (Figure 5.6 and Figure 5.7).
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Figure 5.7: Output PDF of flow rate obtained for MCS n. 3

The PDFs presented in Figure 5.6 and Figure 5.7 support the conclusion that the output PDF is non-symmetric
and non-Gaussian, and that flow rate measurement uncertainty increases significantly with the wave time transit
measurement uncertainty.

The shape of the flow rate output PDF (especially the one presented in Figure 5.7) suggests the existence of an
input variable with similar shape, which has large influence in certain circumstances. The analysis of the
input/output quantities of the multi-stage system presented on Figure 5.1 leads to a most probable quantity, the
nonlinear cross-section “wet” area, 4, obtained using the function referred on eq. 54.

An MCM simulation carried out in order to obtain the output PDF associated with this variable showed that this
explanation was correct. In fact, the shape of this quantity (Figure 5.8) is similar to the shape of Figure 5.6 and
Figure 5.7, giving the observed non-symmetry and non-normality.

It should be emphasized that this conclusion is only possible because MCM provides the PDF information
essential to this analysis. In fact, most methods to assess measurement uncertainties only provide the quantity
estimates and the confidence interval limits.

Another study was carried out to assess the influence of the angle of sound propagation, f, in the output results.
In fact, this influence is expected considering the direct relation between the average velocity, U, and the flow
rate (see fg).
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The nominal angle is usually given as 45°, which can be difficult to establish in practice due to the mounting
conditions and adverse flow conditions, as mentioned in paragraph 5.3.
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Figure 5.8: Output PDF for the cross-section “wet” area
The sensitivity analysis was performed using MCM in a two-step procedure:
- Step 1. Evaluation of the measurement uncertainty of the peak flow velocity considering a standard

uncertainty of the angle f of + 1% (manufactures condition) or, at extreme conditions, of + 5%;
- Step 2. Evaluation of the measurement uncertainty of the corresponding flow rate.

A synthesis of results obtained is presented in Table 5.4, showing 30 % increase in the output measurement
uncertainty due to the angle uncertainty increase from + 0.45° to £2.25° (respectively 1% and 5 % of the
nominal angle of 45°). This increase is shown in Figure 5.9 and Figure 5.10 which have the same scales.

Table 5.4: Summary results for the second set of MCM simulations:

Quantity Relative Standard uncertainty
Angle (P +1% 5%
Peak velocity (#max) +0.8% +3.9%
Flow rate (Q) +64% +83 %

Again, the use of MCM provides quantitative information regarding the relation between the input quantity
(angle) and the output quantity (flow rate) based on a probabilistic approach, essential for the conclusions
obtained.
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5.5 DISCUSSION AND CONCLUSIONS

The success of the evaluation of measurement uncertainties depends on the nature of the metrological problem
considered, being particularly relevant the nature of the mathematical models used.

The development of metrological studies showed that the conventional GUM approach cannot lead to exact
solutions when there are strongly nonlinear models, and alternative approaches such as the Monte Carlo Method
have to be used, as recommended by the Guide.

Flow measurement in sewer systems is a typically non-linear, multi-stage metrological problem. Using the
velocity area method a nonlinear relation exists on the definition of the cross-section “wet” area, therefore
requiring the use of an alternative approach for determining measurement uncertainty.

In fact, the studies carried out showed that, for this type of problems, MCM is suitable to overcome the
difficulties due to the nonlinear problem of the model, thus providing robust estimates of the measurement
uncertainties.
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Sensitivity analysis on the model parameters was carried out to define the uncertainty contributions, allowing a
comparison of the sources of uncertainty effects into the output quantity (flow) uncertainty, as well as giving
information on the best way to increase system accuracy. Furthermore, the analysis allowed to quantify the
relation between the measurement uncertainty of the angle of sound propagation and the flow rate and to confirm
the need to assure that this quantity is obtained with the best accuracy possible.

The MCM approach is also known for allowing a deeper analysis of the stochastic problems, namely, because it
provides the output PDFs. This fact became especially relevant, since results showed that the output PDF can
change from a nearly Gaussian shape to a non-symmetric and non-Gaussian shape depending on the individual
contributions of some input quantities. This fact is significant as it increases the measurement expanded
uncertainty interval.

The analysis of the data allowed concluding that the nonlinear function that provides the cross-section “wet” area
generates a non-symmetric and non-Gaussian PDFs whose shape is quite similar to some of the output PDFs
obtained. This conclusion can only be achieved by using a MCM approach.

This example is relevant to improve knowledge on this type of measurement systems, identifying critical points
to its accuracy, to the identification of improvement opportunities, and providing useful information to support
management decisions within the context of quality management.
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