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Dear reader,

Having been involved in the TrainMiC® programme since the very beginning, when it was 
not even really in place and not known by its current name (i.e. as of 2000/01 onwards), 
it seems to me as if everything has been explained and said already several times and that 
there is not a lot more to add. For that reason, I will just briefly mention some thoughts 
from my personal point of view.

It happened that I was invited to take the position of a visiting scientist at the Institute 
for Reference Materials and Measurements of the Joint Research Centre of the European 
Commission during the time when the institute was also executing various activities 
related to metrology in chemistry in countries candidate to EU accession. Philip Taylor, 
who was in charge of this task at the institute, was convinced that a harmonised training 
material on various topics related to EN ISO/IEC 17025, Chapter 5, was very much 
needed. For that reason, he put Ewa Bulska, Emilia Vassileva, Steluta Duta and myself to 
work to start developing, under his guidance, training material on traceability, validation, 
interlaboratory comparison and other related topics. Some time later, Miloslav Suchanek, 
Ivo Leito, Piotr Robouch and Bertil Magnusson joined and discussions were becoming 
more and more vivid. Not only about the content, but also about the way the programme 
should be run. One thing was clear — Philip was right, there was great interest in the 
topic and it was not easy to handle it in several European countries, being so different, 
as well as following the requirements of European administration at the same time. 
More and more countries were joining the programme, more and more colleagues were 
contributing to the harmonised training material, and some were leaving. I was asked 
to chair the TrainMiC® Editorial Board in 2007. Being aware of the complexity of this 
task, I accepted with quite some fear. However, since then, Beata Godlewska-Żyłkiewicz, 
Bertil Magnusson, Emilia Vassileva, Ewa Bulska, Ioannis Papadakis, Marina Patriarca, 
Martina Hedrich, Mitja Kolar, Ricardo Bettencourt da Silva and Elizabeth Prichard have 
done a remarkable job, which has resulted in harmonised training material on various 
topics. We often had different views on a matter; however, we always succeeded in 
reaching an agreement. I am, therefore, honoured to have the opportunity to chair a group 
of colleagues from all around Europe who value expertise as well as dialogue amongst 
colleagues having different opinions. It is mainly for these reasons that we are now in 
the position to publish — for the first time — harmonised training material, prepared 
through the joint effort of the members of this and previous editorial boards. To complete 
the work, the contributions of Inge Verbist, Lutgart Van Nevel, Tomas Martišius and, 
especially, Philip were, of course, also essential.

Issuing this book on the occassion of 10 years of the TrainMiC® programme is somehow 
symbolic — may the next 10 years be at least as productive, useful and kind as the first 
decade.

Nineta Majcen
TrainMiC® Editorial Board, Chair

Laško, 9 May 2011

Introduction 
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It gives me great pleasure to write these words on the occasion of the publication of this 
book. The material presented is the hard work of all the people in the TrainMiC® Editorial 
Board over many years: people whose roots lie in many countries across Europe and by 
some strange fortune of faith came together and combined their efforts. I would like to 
thank them all for their commitment and endurance. Special thanks go to Nineta Majcen, 
who has been the chair of the Editorial Board since 2007. A daunting task indeed, which 
she accepted (luckily) without the full knowledge of its complexity. She funnelled the 
knowledge and the efforts of all the board members into many finished products: this 
book illustrates her patience, resilience and determination. 

This book is about uncertainty and statistics. Oddly enough, it is published at a moment 
in the history of Europe which is truly loaded with uncertainty. Will the single currency 
survive? Will the European project come to a grinding halt? Will the demons of the past 
be released once again from their bottle in which they have been locked for so many 
decades? Nothing is certain or should be taken for granted.

It seems that humans need a vision to live and thrive. The TrainMiC® vision is to share 
the common effort of many with people across Europe and to do this in a networked and 
a non-colonial way, involving the knowledge of many, irrespective of their origin. An 
endeavour which many question in a day and age where market forces are the standard.

TrainMiC® grew from the deep belief that it is possible for people to work together 
despite their different insights, history, culture, values. A challenging task indeed, as 
we see in Europe today. And yes, during our journey we have certainly been able to 
experience all facets of la condition humaine. 

I guess that is what makes this book special. In fact, at least about this, I am certain.

Philip Taylor
TrainMiC® Programme Leader

16 July 2011

Foreword
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The authors thank all who have in one way or another contributed in the past decade 
to the content of this book or to the development and deployment of the TrainMiC® 
programme in general. TrainMiC® would like to especially recognise the contributions 
of Professor Ivo Leito and Dr. Elizabeth Prichard.
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ANOVA Analysis of variance
BCR Bureau Communautaire de Référence (Community Bureau of 

Reference)
BCR-479 Fresh water (low nitrate) certified reference material
CITAC Cooperation on International Traceability in Analytical Chemistry
CRM Certified Reference Material
DIN Deutsche Industrie Norm (German Institute for Standardisation)
EC European Commission
EN European standard
EU European Union
GUM ISO Guide to the expression of uncertainty in measurement
IEC International Electrotechnical Commission
ILC Interlaboratory comparison
JRC-IRMM Institute for Reference Materials and Measurements of the Joint 

Research Centre
ISO International Organisation for Standardisation
JCGM Joint Committee for Guides in Metrology
LOD Limit of Detection
LOQ Limit of Quantification
MU Measurement uncertainty
PT Proficiency testing
IQC Internal Quality Control
VIM3 Third edition of the International vocabulary of metrology

Abbreviations and acronyms
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a Intercept 
A, Asample Absorbance
a, b, c, d, a1, a2, b1, d1, d2 Input variables of the measurement function
AU Absorbance Units
b0 Intercept
b, b1 Slope
C Concentration (of the analyte)
CLOD Concentration of the analyte at the limit of detection
CI Confidence interval
Cref Reference value
Cstd Concentration of the calibration standard
CV Coefficient of variation
CVPT Coefficient of variation in PT studies
CVR Reproducibility coefficient of variation
d Difference between two measurement results
ddifference Mean of differences between paired values
df Degrees of freedom 
D Residual
f Factor

fstd 
Unitary factor accounting for the calibration standards 
uncertainty

F Value of F-test

F1, F2
Influence variables, not included in the original 
measurement function

G Value of Grubbs’ test
H0 Null hypothesis
H1 Alternative hypothesis
I1, I2 Influence variables of the measurement function
k Coverage factor
k, ka, kb, kc, kd Constant values of the measurement function
Lc Decision level

m Number of replicated analysis used to estimate Cobs

MS Squared deviation of the mean 

Symbols
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M0,1,2…n Mean square values
n Number of observations at each level

n Sample size (the number of observations to include in a 
statistical sample)

N Total number of observations (results)
P Probability
p Number of groups of data (levels)
pi Percentage contribution of the uncertainty component i
r Correlation coefficient (linear regression)
R Correlation coefficient (non-linear regression)

R  Mean analyte recovery

R-chart Range chart
RMSbias Root mean square of different bias values
RSD Relative standard deviation
s, s(xi) Standard deviation 
S1 Sum of squares between groups
s2 Variance
sa Standard deviation of the intercept
sb Standard deviation of the slope
sbl Standard deviation of the blank

sCobs
 Standard deviation of results of ‘m’ replicated analysis 

used to estimate Cobs

S0 Sum of squares within groups

sPT
Standard variation of participating laboratories (in PT 
studies)

sp Pooled standard deviation
sr Repeatability standard deviation
sR Reproducibility standard deviation
SS Sum of squared deviation about the mean 

sy/x
Residual standard deviation (standard deviation of the 
regression line 

sRW Within-laboratory reproducibility
t Value of t-test
t (0.05, n-1) Factor of Student’s distribution
u(xi) Standard uncertainty of the input quantity xi
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Symbols

ui Standard uncertainty associated with variable i
u(Cref) Standard uncertainty of a reference value
ud Standard uncertainty of a difference between two results

uinter 
Standard uncertainty associated with the interpolation of 
a signal in a calibration curve

u(bias) Uncertainty component due to possible bias

u(Rw) Within-laboratory reproducibility uncertainty 
component (intermediate precision as defined in VIM3)

uLab1, uLab2 
Standard uncertainties of measurements reported by  
Lab 1 or Lab 2 

uc Combined uncertainty
uc(Y) or u(Y) Combined standard uncertainty of the output variable
U Expanded uncertainty
Ui Expanded uncertainty associated with variable i

U(Y) or UY
Expanded uncertainty associated with the output 
variable Y

Ud Expanded uncertainty of the difference d
V(xi) Variance
w Mass fraction
wInit Initially estimated mass fraction
wCRM Certified mass fraction

wobs Mean estimated mass fraction

x Independent Variable 

x
Mean of sample (the mean of the values for given 
number of observations, included in a statistical sample)

x0 Value of input quantity
x1, x2 Input quantities

xa, xb, xc 
Input quantities of the measurement function associated 
with input variables a, b and c

xcrit Critical value
xbl Mean of the blank measures
xI Influence quantity of the influence variable I
XL The signal at the limit of detection
X-chart Mean chart (Shewhart)



12

Analytical measurement: measurement uncertainty and statistics

xY Output quantity of the measurement function associated 
with output variable Y

Y Output variable of the measurement function (dependent 
variable)

Y0
Response variable corresponding to blank (signal equal 
to blank signal)

YLOD Signal at the limit of detection
Yc Critical value of the response variable 
y Final result
α Type I error, level of significance
β Type II error
ΔCcont Contribution due to possible contamination
μ Mean of a population
ν Degrees of freedom
σ Standard deviation of a population
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Chapter 1

Measurement uncertainty — Part I Principles
Measurement uncertainty is an important EN ISO/IEC 17025 requirement. Two 
TrainMiC® presentations are dedicated to the uncertainty of measurement. 

The first presentation (Principles) focuses on the general understanding of the uncertainty 
concept, highlighting that the aim of evaluation of uncertainty is to be able to make 
reliable decisions. 

The second presentation (Approaches to evaluation) explains and demystifies the 
approach of the ISO-GUM (Guide to the expression of uncertainty in measurement) [5] to 
estimate and report the uncertainty of a measurement result obtained following a specific 
measurement procedure. A clear description of all the steps needed in the evaluation 
of uncertainty is presented with respective examples. The modelling approach for the 
estimation of measurement uncertainty is compared with single laboratory validation 
and interlaboratory validation approaches. This presentation gives guidance on the 
selection of the appropriate approach for different purposes and draws attention to the 
critical issues when applying the various approaches.
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Slide 1Uncertainty Principle 4.03© European Union, 2010

Uncertainty of
measurement

Part I Principles

Last updated - January 2011

Uncertainty of measurement — Part I Principles 
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Slide 2Uncertainty Principle 4.03© European Union, 2010

To familiarise users with the measurement uncertainty concept
including its meaning, relevance, impact and evaluation principles.

Aim

This presentation aims to explain the measurement uncertainty concept.
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Slide 3Uncertainty Principle 4.03© European Union, 2010

Uncertainty of measurement: Principles:
 Principles of the evaluation of the measurement

uncertainty (MU);
 Modelling approach for the evaluation of the MU.

Uncertainty of measurement: Approaches to evaluation:
 Modelling approach (revision);
 Empirical approach based on interlaboratory data;
 Empirical approach based on INTRAlaboratory data.

Modules

This presentation is the first of two presentations dedicated to the evaluation of 
measurement uncertainty in analytical sciences.

The current presentation (MU-I) presents the internationally accepted principles of the 
evaluation of measurement uncertainty including relevant definitions and conventions. 
The application of these principles is illustrated with the use of the modelling approach 
for the evaluation of the uncertainty associated with measurements of the mass fraction 
of nitrate in fresh waters.

The second presentation (MU-II) goes further in presenting and comparing the three 
most popular approaches for the evaluation of the measurement uncertainty, namely 
the modelling approach, the empirical approach based on interlaboratory data and the 
empirical approach based on intralaboratory data.
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1. Introduction
2. Principles
3. Example
4.  Highlights

Overview

The overview of the presentation includes an explanation of the meaning and relevance 
of the measurement uncertainty concept (Introduction), the description of the principles 
of the evaluation of measurement uncertainty (Principles), the application of the 
presented evaluation of measurement uncertainty principles to the measurement of the 
mass fraction of nitrate in fresh water (Examples) and the most relevant message from 
this presentation (Highlights).
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1. Introduction
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Overview

1. Introduction
1.1. The meaning of the MU concept
1.2. Why do we need the MU concept?
1.3. Relevance of the MU concept
1.4. When should MU be evaluated?

Section 1 is divided into the subsections shown in the slide.



26

Analytical measurement: measurement uncertainty and statistics

Slide 7Uncertainty Principle 4.03© European Union, 2010

Measurement of fibre content in wheat:
The estimated fibre content (13.8 %) in a wheat sample does

     not match perfectly the ‘true
     value’ (12.3 %) due to a
     combination of different components.
     (...)

1.1. Meaning of the MU concept

Fibre (%)

True value

These components
can be quantified.

The meaning of the measurement uncertainty concept is illustrated with the result of 
the measurement of fibre content in a wheat sample. The measured quantity value (1) 
(i.e. the best estimation of the true value: 12.3 % (w/w)) does not match perfectly the 
‘true value’ of the quantity (2) due to a combination of different reasons. These reasons 
could be (i) the concentration of extraction solutions, (ii) the time of extraction, (iii) 
the assigned value of used standards, (iv) the limited knowledge about the effect of 
the sample matrix on analyte extractability, etc. The uncertainty components can be 
quantified using measurement equations.

1  Measured quantity value (VIM3: Entry 2.10): measured value of a quantity; measured value: quantity 
value representing a measurement result [1].
2  True quantity value (VIM3: Entry 2.11): true value of a quantity; true value: quantity value: consistent 
with the definition of a quantity [1].
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Measurement of fibre content in wheat:
(...) the quantified components can be combined
in the measurement uncertainty that estimates
a range of values that
should encompass the
‘true value’ with a
known probability.
Measurement result:
(13.8 ± 1.6) % (w/w)
Confidence level = 95 %

1.1. Meaning of the MU concept

Fibre (%)

True value

The quantified uncertainty components can be combined, using uncertainty model 
equations, aiming to estimate the measurement uncertainty that quantifies the range of 
values that should encompass the ‘true value’ of the measurand with known probability 
(the confidence level of the measurement uncertainty).
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Measurement of fibre content in wheat:
Measurement result:
(13.8 ± 1.6) % (w/w)
Confidence level = 95 %

10 15
Measured quantity value

Error (‘+’;
but can be ‘–’) 

Uncertainty
(always ‘+’)

Fibre (%)

‘True value’

1.1. Meaning of the MU concept

The difference between the measured quantity value, x, (13.8 % (w/w)) and the ‘true 
value’ of the measurand, T, is the measurement error (x − T). The error can be either 
a positive or a negative value depending on the relative positioning of x and T. The 
measurement uncertainty, MU, is a positive value that, in fact, should be larger than the 
modulus of the error with a probability equivalent to the confidence level of the reported 
measurement uncertainty.
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Measurement Uncertainty (VIM3; Entry 2.26):
Non-negative parameter characterizing the dispersion of the
quantity values being attributed to a measurand, based on the
information used.

Measurand (VIM3 [1]: Entry 2.3):
quantity intended to be measured.

VIM3: JCGM 200:2012 — International  vocabulary of metrology — Basic and 
general concepts and associated terms (http://www.bipm.org) [1].

1.1. Meaning of the MU concept

Measurement uncertainty (VIM3 [1]: Entry 2.26):
Non-negative parameter characterising the dispersion of the
quantity values being attributed to a measurand,  based on the
information used.

.

The definition of measurement uncertainty, MU, in the latest version of the VIM 
(VIM3)  [1], states the ambition of the measurement uncertainty concept of, together 
with the measured quantity value, producing intervals that should encompass the true 
value of the measurand (quantity values being attributed to a measurand). This definition 
also makes clear that the estimated measurement uncertainty depends on the available 
information about the measurement performance, quality of used references, model 
of uncertainty components combination, etc. For the same measurement, different 
measurement uncertainty values can be reported depending on the quality of uncertainty 
components evaluation and details of uncertainty combination models used.

The evaluation of the measurement uncertainty does not aim to estimate the ‘best/
smallest’ measurement uncertainty value. In many cases, pragmatic and simplified 
models for the evaluation of the measurement uncertainty are fit for the intended use of 
the measurement.

The measurement uncertainty concept is intimately related to the measurand concept 
since the measurand defines the quantity intended to be measured.
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Measurand (VIM3 [1]: Entry 2.3):  
quantity intended to be measured.

  Clear definition of (a) the analysed item;
          (b) the studied parameter.

Measurand: Mass fraction of folpet pesticide in (...)

a.1) 2 tonnes of apples      or    a.2) 200 g apple sample

1.1. Meaning of the MU concept

Sampling 
uncertainty 

must be included

Defining the measurand is not trivial!

Before going further with the uncertainty concept, the measurand concept must be 
presented and discussed.

The defined measurand depends on the ‘analysed item’ and on the ‘studied parameter’.
The way the analysed item contributes to the definition of a measurand is illustrated with 
the determination of folpet fungicide in apples (Example A).

Measurement of the mass fractions of folpet fungicide in a 200 g or a 2 tonnes sample 
of apples are different metrological challenges since different items are involved. The 
measurement of folpet in 2 tonnes of the fruit must involve the study of the variability 
of the fungicide mass fraction in the large amount of apples and the modelling of the 
impact of the sampling procedure on the ability to estimate the mean folpet mass fraction 
in 2 tonnes of apples. Therefore, in this case, measurement uncertainty due to sampling 
must be included in the uncertainty budget. For the measurements of the mass fraction of 
folpet in 200 g of apples, only analytical steps affect the reliability of the measurement 
result r (i.e. sampling uncertainty is not to be considered).
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Measurand: Mass fraction of (....)

b.1) total lead in an 
industrial residue
sample.

b.2) water soluble lead according to
DIN 38414 standard [3] in an industrial
residue sample.

Measurand (VIM3 [1]: Entry 2.3):
quantity intended to be measured.

  Clear definition of (a) the analysed item;
          (b) the studied parameter.

Defining the measurand is not trivial!

1.1. Meaning of the MU concept

The way the studied parameter contributes to the definition of a measurand is illustrated 
with the the measurement of the content of lead in an industrial residue sample (Example 
B). The customer can be interested in either the total lead content or the water soluble 
lead content. The total lead content is the target if an efficient lead recycling protocol 
is to be implemented. On the other hand, it is relevant to check the water soluble lead 
fraction if the residues are to be stored in a solid waste landfill from which lead can 
leach from rain water into the soil. In both these cases, the same analyte and sample is 
associated with different parameters.

The definition of the measurand is not trivial and is essential before we start analysing a 
sample. It must be linked to the aim of the analysis.
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The chrono(logical) relation between concepts

1.1. Meaning of the MU concept

The concepts ‘measurand’, ‘metrological traceability’, ‘method validation’ and ‘measurement 
uncertainty’ are intimately related in a ‘logical’ and chronological way [2].

The analytical process should start with the definition of the measurand. The metrological 
traceability of the result is defined when the reference for the measurement is selected 
and its role in the measurement equation decided (e.g. correcting relevant bias). After the 
measurement procedure is selected, its validation is performed and collected validation 
data are used for the evaluation of the measurement uncertainty of the result.
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b.2) water soluble lead according to
DIN 38414 [3] standard in an industrial
residue sample.

1.1. Meaning of the MU concept

The previously described chronological relationships can be illustrated with an example.

1.	 Measurand: the mass fraction of water soluble lead in a sample with reference 
code XY determined according to DIN 38414 standard [3];

2.	 Metrological traceability statement: the measurement result is traceable to the 
reference value as defined by DIN 38414 standard;

3.	 Validation: validation of the measurement procedure includes the estimation of 
the performance parameters of the procedure and the assessment of fitness of the 
measurement procedure for the intended use;

4.	 Evaluation of uncertainty: measurement uncertainty is estimated from the data 
available and collected, mostly, from measurement procedure validation. 
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• It is an intrinsic part of the measurement result
(measured quantity value ± measurement uncertainty) units (...).

• It allows the objective interpretation of the measurement
result (e.g. sample compliance evaluation with a legislation).

• It allows for checking of the quality of the performed 
measurement considering its intended use: MU should be 
smaller than the target MU (VIM3 [1]: Entry 2.34).

• It can support the optimisation of measurement procedures 
for cost and performance (in particular in the modelling approach).

1.2. Why do we need the MU concept?

Measurement uncertainty needs to be estimated since it is an intrinsic part of the 
measurement result (not an addend to the measurement result). Its value allows an 
objective and independent interpretation of the measurement result and can be used to 
check quality and prove the adequacy of the measurement for its intended use. A detailed 
uncertainty budget can also be used for the optimisation of the measurement procedure 
aiming at cost and/or uncertainty magnitude reduction. 
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• EN ISO/IEC 17025:2005 — General requirements for the
competence of testing and calibration laboratories [4]

This international standard for the accreditation of testing laboratories defines
that competent laboratories should evaluate their measurement uncertainty (...).

• EU Legislation for official control: some EU legislation states that
official control must be performed in accredited laboratories
(e.g. Article 12, Regulation (EC) No 882/2004).

• EU Legislation for contaminants in food: some EU legislation
states than foodstuff compliance with contamination limits must be judged
considering estimated MU (e.g. Regulation (EC) No 401/2006).

1.3. Relevance of the MU concept

The relevance of the evaluation of measurement uncertainty for a competent presentation 
of the measurement result is evident from EN ISO/IEC 17025 [4] as well as from 
legislation. An accredited laboratory must be able to report quantitative measurement 
results with uncertainty and guide clients on the interpretation of results considering 
measurement uncertainty. Some EU legislation specifies how measurement uncertainty 
must be considered in its enforcement — two examples now follow.

(a) Regulation (EC) No 882/2004 of the European Parliament and of the Council of 
29 April 2004 on official controls performed to ensure the verification of compliance 
with feed and food law, animal health and animal welfare rules, 
Article 12: ‘2. However, competent authorities may only designate laboratories that operate 
and are assessed and accredited in accordance with the following European standards’ 
(http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2004R0882:2006
0525:EN:PDF).

(b) Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the 
methods of sampling and analysis for the official control of the levels of mycotoxins 
in foodstuffs: ‘Acceptance of a lot or sublot — acceptance if the laboratory sample 
conforms to the maximum limit, taking into account the correction for recovery and 
measurement uncertainty’ (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:
2006:070:0012:0034:EN:PDF).

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2004R0882:20060525:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2004R0882:20060525:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:070:0012:0034:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:070:0012:0034:EN:PDF
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• When a new analytical procedure is introduced

• When the scope of an analytical method is extended
(e.g. Method scope extended to samples with more complex matrix)

• When relevant changes are introduced in the analytical
procedure (e.g. new equipment, analysts with different expertise, new
analytical steps introduced or removed, etc.)

• When analytical method performance variations are
observed (e.g. Increasing or decreasing precision observed on control
charts)

1.4. When should MU be evaluated?

Measurement uncertainty must be evaluated in the situations specified in the slide. 

Measurement uncertainty does not need to be estimated for each measurement if 
pragmatic models estimate measurement uncertainty for the whole analytical range 
independently of between-day measurement performance variations.
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2. Principles
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2. Principles
2.1. The ISO-GUM (Guide to the expression of uncertainty in

measurement) [5]
2.2. The Eurachem/CITAC [6], Nordtest [7] and EUROLAB [8]

guides
2.3. Steps in the evaluation of the MU
2.4. How results should be reported
2.5. How results should be compared
2.6. Alternative approaches for the evaluation of the MU

Overview

The following section presents the internationally accepted principles of the evaluation 
of the measurement uncertainty.

This section is divided into the subsections shown in the slide.
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The ISO-GUM (Guide to the expression of uncertainty 
in measurement) presents the internationally accepted principles
for the evaluation of the MU [5].

(*) ISO-GUM — JCGM 100:2008 — Evaluation of measurement data – Guide to the    
expression of uncertainty in measurement (http://www.bipm.org) [5].

2.1. The ISO-GUM

(...) Evaluation effort should not be disproportionate:

‘The evaluation of uncertainty is neither a routine task nor a purely
mathematical one; it depends on detailed knowledge of the nature of the
measurand and of the measurement procedure’, ISO-GUM, para. 3.4.8 (*).

The internationally accepted principles of the evaluation of measurement uncertainty are 
presented in the ISO Guide to the expression of uncertainty in measurement (GUM) [5]. 
The GUM is applicable to any type of quantitative measurements (e.g. chemical, 
physical, biological measurements). This guide states that the evaluation effort should 
not be disproportionate considering the intended use of the measurement.
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The application of the GUM general principles to
measurements in chemistry is described in these guides:

 Eurachem/CITAC Guide CG4, Quantifying Uncertainty in 
Analytical Measurement, Second edition, 2000 
(http://www.eurachem.org) [6];

 

 Nortdtest TR537, Handbook for Calculation of Measurement
Uncertainty in Environmental Laboratories, 2004
(http://www.nordicinnovation.net) [7]; 

 EUROLAB Technical Report No 1/2007, Measurement
uncertainty revisited: Alternative approaches to 
uncertainty evaluation (http://www.eurolab.org) [8]. 

 2.2. The Eurachem/CITAC, Nordtest and
EUROLAB guides

There are several guides (based on the GUM principle) available for the evaluation of 
uncertainty of measurements in chemistry: these guides can be downloaded for free from 
the Internet. 

•	 The Eurachem/CITAC Guide CG4 [6] presents a comprehensive description of 
detailed and pragmatic approaches for the evaluation of measurement uncertainty. 

•	 The Nordtest TR537 guide [7] presents, in a simple way, the most pragmatic 
approaches for the evaluation of measurement uncertainty. 

•	 The EUROLAB Technical Report No 1/2007 [8] discusses how various 
approaches for the evaluation of measurement uncertainty should be applied.
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These steps are applicable to all MU evaluation approaches:

1. Specify the measurand

2. Specify the measurement procedure and measurement function (VIM3, Entry 2.49)

3. Identify the sources of uncertainty

4. Quantify the uncertainty components

5. Calculate the combined standard uncertainty

6. Calculate the expanded uncertainty

7. Examine the uncertainty budget

2.3. Steps in the evaluation of the MU

Independently of the approach for the evaluation of measurement uncertainty used, the 
following sequence must be followed. The time and effort needed for each step depends on 
the applied approach for the evaluation of measurement uncertainty and on the available 
data.

‘Measurement function’ is a new term (VIM3 [1]: Entry 2.49) for ‘Model equation’.
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Differences in the defined measurand are often responsible for
the incompatibility of measurement results.

1. Specify the measurand

Defining the measurand is not trivial!

2.3. Steps in the evaluation of the MU

The definition of a measurand is the first step in the evaluation of the measurement 
uncertainty. This step is not trivial, as has been previously explained. Misunderstandings 
and mistakes in defining or properly informing about the considered measurand are often 
reasons for the incompatibility of measurements obtained by different laboratories. If 
the same item is analysed by two laboratories for supposedly the same parameter (e.g. 
see DIN 38414 example) the laboratories will obtain incompatible results (3). In fact, the 
measurands are different and, thus, the results are not comparable.

(3)  Metrological compatibility of measurement results (VIM3: Entry 2.47): metrological compatibility; 
property of a set of measurement results for a specified measurand, such that the absolute value of the 
difference of any pair of measured quantity values from two different measurement results is smaller than 
some chosen multiple of the standard measurement uncertainty of that difference [1].
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The measurement procedure is selected considering the defined
measurand and other criteria (e.g. target MU and costs).

On many occasions, the measurement function (Y = f(xa, xb, xc, xd); 
where Y is the output quantity and xa, xb, xc and xd are the input 
quantities from variables a, b, c and d, respectively), established 
together with the measurement procedure, is updated after the 
following stage (Identify the sources of uncertainty).

2. Specify the measurement procedure and measurement function

2.3. Steps in the evaluation of the MU

Measurement function:
Y = f(xa, xb, xc, xd) 

After defining the measurand, the measurement procedure is selected and the measurement 
function is written. The measurement procedure must also be chosen considering the 
target measurement uncertainty (4) [1], the available resources, the cost of analysis, etc.

On many occasions, the measurement function must be updated after the identification of 
the sources of uncertainty. The addition of unitary multiplying factors needed to model 
the impact of relevant uncertainty components on the measurement is frequently applied. 

(4)  Target measurement uncertainty (VIM3: Entry 2.34): target uncertainty; measurement uncertainty 
specified as an upper limit and decided on the basis of the intended use of measurement results [1].
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The identified sources of uncertainty must
reflect all effects that affect measurement
result.

The impact of possible mistakes and blunders is not
to be considered since their occurrence and impact
is unpredictable.

3. Identify the sources of uncertainty

2.3. Steps in the evaluation of the MU

The identification of the sources of uncertainty is another demanding step in the evaluation 
of the measurement uncertainty. Understanding which effects can affect measurement 
quality is not trivial, even for simple measurements.

The impact of mistakes and blunders, such as performing molecular spectrophotometric 
measurements on solutions with suspended particles, on measurement quality is not to 
be considered in the evaluation of the measurement uncertainty. This type of mistake is 
easily detected and should be overcome by repeating the measurement.
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Cause/effect diagrams can be used to avoid double-counting or
forgetting relevant effects or correlations between variables.

3. Identify the sources of uncertainty

b d F2

a c F1
a1
a2

b1 d2

d1
Y

2.3. Steps in the evaluation of the MU

Updated measurement function: Y = f(xa1, xa2, xb1, xd1, xd2, xc, xF1, xF2) 

Input variable a  represents a sources of uncertainty
that can be divided into two input variables (a1 and a2)

F1 and F2
represent two
influencing
variables, not
included in the
original 
measurement

reflect relevant
function, that

effects (...)

The elaboration of cause/effect diagrams (also known as fishbone diagrams) can help 
analysts in avoiding forgetting or double-counting relevant uncertainty components. 
These diagrams have a major vector, converging to the measurand, to which secondary 
vectors, representing sources of uncertainty, converge. The secondary vectors can also 
be fragmented in uncertainty components that reflect specific effects on secondary 
uncertainty components. Whenever useful for the quantification and combination of the 
uncertainty components, the uncertainty components (represented by a single vector) 
can be combined in the same vector. This combination is frequently used for components 
reflecting the precision of single steps, since the global method precision quantifies the 
combined effect of all these components.

Although cause/effect diagrams are useful tools, analysts still need to be extremely careful 
in defining the problem to be solved during the evaluation of measurement uncertainty.

Sometimes, it is necessary to take into account unitary (i.e. equal to 1) influence variables 
(traditionally not used in the calculation of the ‘measured quantity value’) to cover 
relevant sources of uncertainty. An example: the impact of temperature oscillations in 
the estimation of the water soluble lead, at 20 ºC, from an aliquot of a sample of an 
industrial residue.
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4. Quantify the uncertainty components

The quantification of the uncertainty components is divided into:
Type A evaluations (VIM3) [1]: ‘evaluation of a component of
measurement uncertainty by a statistical analysis of measured
quantity values obtained under defined measurement conditions’.

In this case, the uncertainty component is quantified in ideal
conditions since all information for the reliable estimation of
that effect on measurement uncertainty are available (...)

2.3. Steps in the evaluation of the MU

The identified sources of uncertainty are subsequently quantified using the developed 
measurement function. Well-known models for the quantification of the uncertainty 
associated with volumetric, gravimetric and instrumental quantification steps are 
available in the bibliography [[5], [6]].

The quantification of uncertainty components is divided into two types.

Type A evaluations, performed in conditions where all information about the magnitude 
of an effect has been provided by experiments in your laboratory.
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4. Quantify the uncertainty components

The quantification of the uncertainty components is divided into:
Type B evaluations (VIM3) [1]: ‘evaluation of a component of
measurement uncertainty determined by means other than a
Type A evaluation of measurement uncertainty’.

GUM [5] proposes harmonised and pragmatic solutions to overcome
these limitations.

These evaluations are performed when no resources or data
needed to gather all objective information about the magnitude
of a source of uncertainty are available.

2.3. Steps in the evaluation of the MU

Type B evaluations, where approximations to deal with the lack of objective information 
about the magnitude of the component must be considered.

GUM [5] presents conventions to harmonise type B evaluations for the most frequent 
scenarios.
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(...)
The uncertainty components are quantified as ‘standard
uncertainties’ (u).
Considering variable a, u(xa) defines an interval (xa ± u(xa)) that 
should encompass the ‘true value’ of that variable with a confidence
level of 68 %.

4. Quantify the uncertainty components

The uncertainty components are
quantified as needed for their
combination (propagation of 
uncertainty law).

xa ± u(xa)

2.3. Steps in the evaluation of the MU

The uncertainty components are quantified as standard uncertainties (u) needed for their 
combination using the law of propagation of uncertainty. The interval built from the 
best estimation of the input quantity, a, and its standard uncertainty, ua, (a ± ua) should 
encompass the true value of the variable with a confidence level of 68.3 % resembling a 
standard deviation.
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(...)
Usually, minor uncertainty components (with values less than one 
fifth of the major component) do not need to be quantified.

4. Quantify the uncertainty components

2.3. Steps in the evaluation of the MU

The uncertainty components which have been proven after approximate calculations to 
be minor (with values less than one fifth that of the major component) do not need to 
be quantified or combined with the other uncertainty components, since they will not 
change significantly the estimated measurement uncertainty. 
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(1) Eurachem/CITAC Guide CG4, Quantifying Uncertainty in Analytical Measurement,
Second edition, 2000, Appendix E.2 (http://www.eurachem.org) [6].

(2) JCGM 101:2008 — Evaluation of measurement data — Supplement 1 to the
‘Guide to the expression of uncertainty in measurement’ — Propagation of
distributions using a Monte Carlo method, First edition (http://www.bipm.org) [9]. 

5. Calculate the combined standard uncertainty

Several approaches can be followed to combine the estimated
uncertainties:

 law of propagation of uncertainty;
 numerical methods:

— Kragten method (easily implemented in a spreadsheet) (1); 
— Monte Carlo method (needs dedicated software) (2).

2.3. Steps in the evaluation of the MU

This presentation puts forward the most popular way of combining the uncertainty 
components: the law of propagation of uncertainty.

There are numerical alternatives to the propagation of uncertainty law such as the 
numerical Kragten method [6] and the Monte Carlo method [9]. 
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5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty;
When the uncertainty components are independent considering all
relevant input and influence quantities:

Variables a and b are correlated considering variable l: ‘I’:

xa and xb can vary in the same direction.
0 %

Normalised
value

100 % xI

xa

xb

Both variables
are affected by
the ‘xI’ value.

Time

2.3. Steps in the evaluation of the MU

Both variables
are affected by
the ‘xI’ value.

xI

xa or b

xI v xa 

xI v xb 

The simplified version of the law of propagation of uncertainty, presented in the 
following slides, is only applicable if input quantities are independent considering the 
variation of influence quantities (i.e. quantities that affect the input quantity value). The 
slide presents an example of three variables, two input quantities (xa and xb) from the 
measurement function, and one influence quantity (xi) from which the variation affects 
input quantities values. The normalised value axes represent the ratio between the value 
of the variable and the maximum value observed within the studied period of time. Input 
quantities are correlated since when xi increases, the xa value increases and the xb value 
decreases affecting the output variable value in a correlated way. The correlated effect 
can either increase or decrease the uncertainty estimated assuming an independence of 
input quantities.

Examples of correlated variables: 

•	 variable a (solution volume (xa)): an increase in temperature (xi) produces an 
increase in the volume of the solution (xa);

•	 variable b (molar absorptivity of the analyte (xb)): an increase in temperature (xi) 
produces a decrease in the molar absorptivity of the analyte.
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Variables a and b are NOT correlated considering variable l: ‘I’:

xa  and xb  can both be unaffected by xI value. 

5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty:
When the uncertainty components are independent considering all
relevant input and influence quantities:

0 %

Normalised
value

100 % xI

xa

xb

Only ‘a’ variable
is affected by the
xI’ value.

Time

2.3. Steps in the evaluation of the MU

Both variables
are affected by
the ‘xI’ value.

xI

xa or xb

xI v xa 

xI v xb 

When only input quantity xa is influenced by the xi value, the input quantities (i.e. xa and 
xb) are not correlated and can be considered independent. In this case, the simplified 
version of the law of propagation of uncertainty can be used. The observed variation of 
xb in the normalised value axes results from the measurement precision.

Examples of not correlated variables: 

•	 variable a (solution volume (xa)): an increase in laboratory temperature (xi) 
produces an increase in the volume of the solution (xa);

•	 variable b (response of GC detector (xb)): an increase in laboratory temperature 
(xi) does not affect GC detector response.
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5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty:
When the uncertainty components are independent considering all
relevant input and influence quantities (Y = f(xa, xb, xc, xd)):

Combined standard
uncertainty
(notation uc(Y) is common) 

2.3. Steps in the evaluation of the MU

According to the simplified version of the law of propagation of uncertainty for 
independent variables, the standard uncertainty associated with the output quantity 
(u(Y)) is the square root of the weighted sum of squares of the standard uncertainties 
associated with the input quantities (u(xi))

2 where the weighted factors are the squares of 
their partial derivatives (∂Y/∂xi)

2.
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5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty (independent variables):

Y=2·xa+0.5·xb:Y = 2xa + 0.5xb:

(...)

if xa = 10.1 and xb = 32.0;

Y = 36.2 (units)

xa

xb

Y

xa

xb

Y

36.236.2

2.3. Steps in the evaluation of the MU

This slide illustrates the combination of the uncertainties associated with the input 
quantities, xa and xb, used to calculate the output quantity Y (Y = 2·xa+ 0.5·xb). The two 
input quantities and the output quantity can be represented together in a 3D graph (Y v xa 
v xb). In this graph, it is also represented by the point (Y/xa/xb: 36.2/10.1/32.0: respective 
units have been omitted).
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Y = 2xa + 0.5xb:

(...) if u(xa) = 0.35 and u(xb) = 0.12

xa
36.236.2

xb

Y

5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty (independent variables):

  

u Y( ) =
2( )2

u xa( )2
+

0.5( )2
u xb( )2

  

u Y( ) =
2( )2

0.35( )2
+

0.5( )2
0.12( )2

= 0.87

2=
ax

Y

5.0=
bx

Y

u(Y) is more
affected by

u(Xa)

2.3. Steps in the evaluation of the MU

It is evident from the law of propagation of uncertainty that the contribution of an 
uncertainty component to the output variable uncertainty depends both on the magnitude 
of the standard uncertainty (u(xi)) and on the magnitude of the respective partial derivative 
((∂Y/∂xi)). The partial derivative represents the slope of the tangent of the function Y v xi. 
The uncertainty component contribution is larger when the Y value increases more with 
the increment in the xi value. In this example, the uncertainty u(xa) is the major source 
of uncertainty.



56

Analytical measurement: measurement uncertainty and statistics

Slide 37Uncertainty Principle 4.03© European Union, 2010

5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty (independent variables):

Particular cases of the law of propagation of uncertainty:

If:

(...) where k, ka, kb, kc and kd are constant values:

ddccbbaa xkxkxkxkkY ++++=

  
u(Y ) = ka u(xa)

2
+ kb u(xb)

2
+ kc u(xc )

2
+ kd u(xd )

2

2.3. Steps in the evaluation of the MU

The general law of propagation of uncertainty, for independent input quantities, can be 
simplified for linear relationships as in the slide.
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5. Calculate the combined standard uncertainty

5.1. Law of propagation of uncertainty (independent variables):

Particular cases of the law of propagation of uncertainty:

If:

(...) where k is a constant value:
dc

ba

xx
xxkY =

( ) ( ) ( ) ( ) ( ) 2222

+++=
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b
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a
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x
xu

x
xu

x
xu

x
xu

Y
Yu

Relative standard
uncertainty

2.3. Steps in the evaluation of the MU

The general law of propagation of uncertainty, for independent input quantities, can 
be simplified for multiplying relationships as in the slide. When the output quantity is 
calculated from the multiplication and/or division of the input quantities, the relative 
standard uncertainty of the output quantity (u(Y)/Y) is estimated by the square root of the 
sum of the squares of the relative standard uncertainties of the input quantities (u(xi)/xi)

2.
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6. Calculate the expanded uncertainty

This stage aims at expanding the confidence level associated with
the ‘combined standard uncertainty’ (u(Y)) from 68 % to 95 % or 99 %.
This expansion involves the use of a multiplying factor (coverage
factor, k) to estimate an expanded uncertainty (U). 

xY ± u(Y) xY ± U(Y)

UY = k  u(Y)
68 %68 % 95 %95 %

2.3. Steps in the evaluation of the MU

The confidence level of the combined standard uncertainty (u(Y)) (i.e. 68.3  %) must 
be expanded to a higher level (usually 95 % or 99 %) before measurement of the result 
being reported or interpreted. The expansion is performed by multiplying the combined 
standard uncertainty (u(Y)) with an adequate multiplying factor (k) called the coverage 
or expansion factor. The resulting ‘expanded uncertainty’ is represented by a capital ‘U’ 
(U(Y) = k·u(Y)).
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6. Calculate the expanded uncertainty

In most cases, the amount of information combined in the
‘combined standard uncertainty’ guarantees a high number of
degrees of freedom associated with the estimated result.
In these cases, the following approximations can be performed:

• Confidence level of approximately 95 %: U(Y) = 2  u(Y) (k = 2);

• Confidence level of approximately 99 %: U(Y) = 3  u(Y) (k = 3).

Considering u(Y) = 0.87:
The expanded uncertainty (U(Y)) is: 2  0.87 = 1.74 (units) for a
confidence level of approximately 95 %.

2.3. Steps in the evaluation of the MU

When a thorough quantification of major uncertainty components is performed, so as 
to guarantee reliable evaluation of the measurement quality, the estimated combined 
standard uncertainty is associated with a high number of degrees of freedom. In these 
cases, coverage factors, k, of 2 or 3 can be used to expand the uncertainty to confidence 
levels of approximately 95 % or 99 % respectively. The word ‘approximately’ should 
be used when stating the confidence level to make it clear that an approximated model 
was used.

The slide presents the expansion of the standard uncertainty estimated for Example A 
previously given.
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7. Examine the uncertainty budget

The careful examination of the relative magnitude of the uncertainty
components allows the detection of mistakes.

2.3. Steps in the evaluation of the MU

After estimation of the expanded uncertainty, the uncertainty budget should be checked 
to identify possible mistakes in calculations or defined assumptions. If an expected 
minor source of uncertainty is a major uncertainty component, measurement function 
and corresponding calculations should be checked.
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• The MU should be reported with a maximum of two significant
figures following adequate number rounding rules:

Considering U(Y) = 1.74 (units), it should be reported 1.7 (units).

• The measured quantity value should be reported with the same
number of decimal places reported in the MU. The units, coverage
factor and confidence level should be also clearly reported:

Considering xY = 36.20 (units are, for instance, mg L-1), it should 
be reported:                   (36.2 ± 1.7) mg L-1

For a confidence level of approximately 95 % considering a coverage factor of 2.

2.4. How results should be reported

The results should be reported in a harmonised way to avoid misinterpretation of their 
meaning. The slide presents conventions, described in GUM [5], that should be followed 
for reporting expanded uncertainties.
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Results from different measurements and/or samples
should be compared considering the uncertainty
associates with their difference (ud) and defining a
target zero value.

The same wine sample was analysed in two laboratories for
procimidone pesticide concentration. The following results were
reported by both laboratories:

     Lab 1: 26.9 ± 2.7 µg L-1 (k = 2; confidence level of 95 %); 

     Lab 2: 30.7 ± 4.9 µg L-1 (k = 3; confidence level of 99 %)..  

2.5. How results should be compared

Results from two measurements, for instance obtained from the analysis of the same item 
by two laboratories or obtained from the analysis of two items by the same laboratory, 
must be compared taking the respective measurement uncertainty into account. Two 
measurement results are compatible if the confidence interval of their difference, d, with 
a high confidence level (typically, approximately 95 % and 99 %) include the target zero 
value (d ± k·ud).

Example A1 illustrates the comparison of results from two measurements of procimidone 
in the same wine sample obtained by two laboratories.
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(…) the standard uncertainties from both measurement results are: 
        Lab 1: uLab 1 = 2.7/2 = 1.35 µg L-1 (k = 2; conf. level of 95 %);
        Lab 2: uLab 2 = 4.9/3 = 1.63 µg L-1 (k = 3; conf. level of 99 %).

2.5. How results should be compared

) the standard uncertainty, ud, associated with the difference, d
(d = 26.9 – 30.7 = – 3.8 μg L-1) between both results is:

  
ud = uLab 1( )2

+ uLab 2( )2
= 1.35( )2

+ 1.63( )2
= 2.12 g L-1

(…

since the respective expanded uncertainty (Ud) for a confidence   
level of approximately 95 % is 4.24 µg  L-1 (2  2.12= 4.24),and this   
value is larger than |d| = 3.8, it can be concluded that: ??

(...) the measurement results are compatible (VIM3 [1]: Entry2.47) 
(i.e. metrologically equivalent).

(…)

The expanded uncertainties from both measurements must be converted to standard 
uncertainties before being combined in the standard uncertainty of the difference, ud. 
The standard uncertainty of the difference, ud, is calculated from the equation previously 
presented for linear relationships between variables (Example B in Section 5.1). A 
coverage factor of 2 is used to expand the standard uncertainty of the difference. The 
measurement results are compatible since |d| < (2·ud).
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For the evaluation of the compliance of a result with a
reference limit, see the following references:

 Eurachem/CITAC Guide, Use of uncertainty information in 
 compliance assessment, First edition, 2007
 (http://www.eurachem.org) [10]  
Eurachem/CITAC Information leaflet, Use of uncertainty   

 information in compliance assessment, 2009 
(http://www.eurachem.org) [11]

 

2.5. How results should be compared

As shown in the slide, the assessment of the compliance of an analysed sample with 
reference limits is discussed in references [10] and [11].
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Several approaches for the evaluation of the MU are available.
These approaches are distinguished by the information used and
the evaluation strategy and calculations involved.

The three most popular approaches are:

Modelling
approach:
Quantification and
combination of all
individual components
responsible for
measurement
 uncertainty.

Single laboratory
validation approach:
Combines global performance
parameters collected during
in-house method validation
with other (most of the time,
minor) uncertainty
   components.

I n t e r l a b o r a t o r y
validation approach:
Combines interlaboratory 
data with other (most of
the time, minor)
uncertainty components.

2.6. Alternative approaches for the evaluation
of the MU

Several approaches for the evaluation of measurement uncertainty, based on the general 
principles of GUM [5], are known. The three most popular approaches are: 

1.	 the modelling approach
2.	 the single laboratory validation approach and 
3.	 the interlaboratory validation approach. 

In the modelling approach (1), individual uncertainty components that contribute to 
measurement uncertainty are quantified and combined. In the popular single laboratory 
validation approach (2), intermediate precision and bias are evaluated and their impact 
on measurement result is quantified as two independent uncertainty components. These 
uncertainty components are combined, as relative standard uncertainties, with other 
components (most of the time minor) that also contribute to measurement uncertainty 
but were not reflected in the previous validation data (e.g. sample heterogeneity).

In the interlaboratory validation approach (3), reproducibility, most of the time reflecting 
the major sources of uncertainty, is combined with any other uncertainty components, 
that contribute to measurement uncertainty, but were not reflected on the previous data 
(e.g. sample heterogeneity).

Other valid approaches for the evaluation of measurement uncertainty are available and 
described in the bibliography.
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Several approaches for the evaluation of the MU are available.
These approaches are distinguished by the information used and
the evaluation strategy and calculations involved.

The three most popular approaches are:

Modelling
approach:

Single laboratory
validation approach:

Interlaboratory
validation approach:

Ability to support method optimisation -+

2.6. Alternative approaches for the evaluation
of the MU

- +Simplicity of application

- +

MU expected magnitude

The interlaboratory validation approach is the one that involves simpler algorithms since 
many uncertainty components are combined in measurement reproducibility. 

The modelling approach allows measurement procedure optimisation for cost or 
measurement uncertainty magnitude reduction.

The modelling approach usually results in estimates of uncertainty which are smaller 
because detailed models of the measurement performance are developed. The other 
more pragmatic approaches involve elaboration of simplified models of measurement 
performance that will not describe, as accurately, how measurement performs for a 
specific case.

The above mentioned trend is observed in evaluations performed by all three approaches.
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3. Example

This section illustrates the described principles by explaining the evaluation of uncertainty 
associated with the measurement of the mass fraction of nitrate in fresh waters by ion 
chromatography.
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3. Example
3.1. Problem description (Measurement of the mass fraction of 

nitrate in drinking water)
3.2. Metrological traceability
3.3. Measurement procedure validation
3.4. Evaluation of the MU (modelling approach)
3.5. Conclusion

Overview

This section is divided into the subsections shown in the slide.
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 Measurement of the mass fraction of nitrate in fresh water 
samples by ion chromatography:

— Definition of the metrological traceability;

— Brief description of the analytical method
validation;

— Evaluation of the measurement uncertainty (Modelling
approach).

Measurand: Nitrate mass fraction in a specific fresh water
sample (e.g. nitrate mass fraction in water sample with
reference number 10/1524).

3.1. Problem description

This slide presents the steps (in chronological order) needed for the measurement of the 
mass fraction of nitrate in fresh water. The last stage of this process is the evaluation of 
measurement uncertainty. The measurand is defined as previously described.
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Measurement results will be traceable to the nitrate mass fraction
of the BCR-479 Certified Reference Material (simulated fresh
water).

3.2. Metrological traceability

The metrological traceability of the measurement result was defined after it was decided 
that measurement results would be corrected for bias obtained from the analysis of the 
certified reference material BCR-479. The performed correction aims to establish the 
measurement traceability to the value embodied in the stated certified reference material. 
Therefore, measurements are traceable to the certified value of the mass fraction of nitrate 
in BCR-479. The certified value has mass fraction units (mg of nitrate in kg of water).
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Measurement procedure validation involves the following steps:

—  Evaluation of the Limit of Quantification;

—  Evaluation of the instrumental response linearity;

—  Repeatability test;

—  Intermediate precision test;

—  Trueness test: Replicated analysis of BCR-479 Certified
Reference Material in intermediate precision conditions.

3.3. Measurement procedure validation

Validation of this measurement procedure involves the following steps:

1.	 estimation of the limit of quantification;
2.	 evaluation of the linearity of the ion chromatographer instrumental response;
3.	 assessment of the measurement repeatability;
4.	 assessment of the measurement intermediate precision;
5.	 assessment of the measurement trueness through replicated analysis of the BCR-

479 under intermediate precision conditions.

The measurement procedure validation ends with the evaluation of measurement 
uncertainty that includes an assessment of its fitness for the intended use.
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Measurand: Nitrate mass fraction in a specific fresh water sample.

3.4.1. Specify the measurand

3.4.2. Specify the measurement procedure and measurement function

Measurement procedure: Direct measurement of the nitrate 
mass fraction, in a sample aliquot, by ion chromatography after 
multi-point calibration with calibration standards prepared in pure 
water with known mass fraction. Initially, the estimated measurement 
result is corrected for analyte recovery observed on the analysis of
the BCR-479 CRM.

3.4. Evaluation of the MU

The following slides present the application of the previously described steps in the 
evaluation of measurement uncertainty for the measurement of the mass fraction of 
nitrate in fresh waters.

The definition of the measurand and the selection of the measurement procedure are the 
first steps in this evaluation. The measurement procedure specifies that measurement 
results are corrected for bias as measured in the analysis of BCR-479: the decision for 
correcting for the bias on measurement result was taken when its traceability was defined.
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Measurand: Nitrate mass fraction in a specific fresh water sample.

3.4.1. Specify the measurand

3.4.2. Specify the measurement procedure and measurement function

3.4. Evaluation of the MU

R

CRMC

obsC

w: mass fraction;

wInit: initially estimated mass fraction;

     : mean analyte recovery;

       : certified mass fraction (BCR-479);

        : mean estimated mass fraction of
        the CRM.

obs

CRMInit

Init

C
Cw

R
ww

=

==
R

CRMC

obsC

w: mass fraction = 2.348 mg kg-1;

wInit: initially estimated mass fraction (2.38 mg kg-1)

     : mean analyte recovery (0.987)

       : certified mass fract. (BCR-479)(13.3 mg kg-1)
       : mean estimated mass fraction of
        the CRM (13.48 mg kg-1)

obs

CRMInit

Init

C
Cw

R
ww

=

==
R

CRMC

obsC

The measurement function is presented on the left-hand side of the slide together with 
the bias correction factor (reverse of the mean analyte recovery). On the right-hand side 
of the slide, and in blue, example results in the measurement of the nitrate mass fraction 
in a fresh water sample are presented (2.348 mg kg-1).
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3.4.3. Identify the sources of uncertainty

R

w

wInit

Statistical interpolation (Inter)
Calibration standard (fstd)

Cobs

CCRM

3.4. Evaluation of the MU

obs

stdCRMInit

stdInit

C
fCw

R
fww

=

==

Measurement 
function
Updating:

An additional unitary factor (fstd = 1) must be considered to allow for
the calibration standards’ uncertainty.

The demanding identification of the sources of uncertainty is presented in the cause/
effect diagram. All input quantities are uncertainty components represented by vectors 
in the cause/effect diagram. The uncertainty associated with the initially estimated mass 
fraction (wInit) is affected by two uncertainty components: 

1.	 statistical interpolation uncertainty estimated by the regression model; and 
2.	 uncertainty associated with the concentration of calibration standards.

The assumption in the least squares regression model related to standard concentrations 
is: calibration standards’ relative (not absolute) concentrations must be affected by 
negligible uncertainty (5) [[6], [12]]. A unitary multiplying factor (fstd) must be added to the 
measurement function to allow for the calibration standards uncertainty.

(5)  Eurachem/CITAC Guide CG4 [6], p. 77: in this guide, the following approximation for the least squares 
regression model is defined: ‘Therefore the usual uncertainty calculation procedures for c0 only reflect 
the uncertainty in the absorbance and not the uncertainty of the calibration standards, nor the inevitable 
correlations induced by successive dilution from the same stock. In this case, however, the uncertainty of 
the calibration standards is sufficiently small to be neglected’.
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(i) fstd

3.4.4. Quantify the uncertainty components

              The relative standard uncertainty (ufstd/fstd) associated with
fstd factor is estimated by excess, in a pragmatic way, by the
relative standard uncertainty (uCstd/Cstd) associated with the
concentration of the calibration standard  with lowest concentration
(highest relative standard uncertainty):

Calculations were performed as presented in Example A.1 in the 
Eurachem/CITAC CG4 Guide CG4 (http://www.eurachem.org) [6].

008410
stdstd

stdstd .
C
u

f
u Cf ==

3.4. Evaluation of the MU

The next stage in the evaluation of uncertainty is the quantification of the uncertainty 
components.

The relative standard uncertainty associated with the factor fstd is estimated by excess, 
in a pragmatic way of the relative standard uncertainty (uCstd

/Cstd) associated with the 
concentration of the calibration standard with lowest concentration (highest relative 
standard uncertainty) [12].
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(ii) Inter The interpolation standard uncertainty (uinter)
was estimated using Equation 3.5 from Appendix E.3 of the
Eurachem/CITAC Guide CG4 (http://www.eurachem.org) [6]. This 
equation was applied after checking regression model assumptions.

Since uinter varies with the concentration and daily calibration curve,
the reported uinter value cannot be extrapolated to other calibration
curves and/or concentrations.

3.4.4. Quantify the uncertainty components

)kg mg 2.38 (for kg mg 1743.0 -1-1
int =eru

3.4. Evaluation of the MU

The interpolation uncertainty was estimated from the specific multi-point calibration 
curve and sample signal using equations from the linear regression model [6]. This 
model was applied after a careful evaluation of the validity of the regression model 
assumptions.
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(iii) R

3.4.4. Quantify the uncertainty components

02252.0
3.13
23.0

1248.13
8937.0

3.13
48.13 22

=+=
(...)

ui is the standard uncertainty associated with variable i

Ui is expanded uncertainty associated with variable i

sCobs is the standard deviation from m replicated analysis used to estimate        

k is the coverage factor associated with UCCRM

3.4. Evaluation of the MU

obsC

The  standard uncertainty associated with the estimated
analyte recovery,   , results from the combination of the uncertainty
associated with       and CCRM.

R

obsC

2

CRM

2

obs

CRMobs +=
C

kU
mC

s
Ru CC

R

The relative standard uncertainty of the mean analyte recovery, estimated from the 
analysis of the BCR-479 under intermediate precision conditions, results from the 
combination of two components as relative standard uncertainties (terms inside the 
square root operation): the first term represents the relative standard deviation of the 
mean recovery reflecting the impact of the measurement precision on mean recovery; 
the second term represents the relative standard uncertainty of the certified value that 
estimates how the quality of the certified value affects the quality of the measurements 
of samples with unknown nitrate mass fraction.



78

Analytical measurement: measurement uncertainty and statistics

Slide 59Uncertainty Principle 4.03© European Union, 2010

3.4.5. Calculate the combined standard uncertainty

Since the measurement function involves the multiplication and 
division of the input quantifies:

(...)

ui: standard uncertainty associated with variable i.

3.4. Evaluation of the MU

22
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wu ferR
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All uncertainty components are combined following the particular case of the law of 
propagation of uncertainty for multiplicative relationships (Section 5.1, Example C).
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                                                                     *

(*) For a confidence level of approximately 95 % considering a
coverage factor of 2.

( ) -1kg mg 36.035.2 ( )±

3.4.6. Calculate the expanded uncertainty

The expanded uncertainty is estimated considering a coverage
factor of 2 for a confidence level of approximately 95 %:

The measurement results is reported as:

??

3.4. Evaluation of the MU

-1kg mg 3616.01808.022 === ww uU

A coverage factor of 2 is used to expand the standard uncertainty to a confidence level 
of approximately 95 %.

The coverage factor and confidence level used must be reported together with the result.
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22

=
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3.4.7. Examine the uncertainty budget

Since the uncertainty components are combined as relative
standard uncertainties:

(…), their percent contribution, p (%), is estimated by:

3.4. Evaluation of the MU
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The uncertainty budget is examined from the percentage contribution of the uncertainty 
components point of view. The presented equations for estimating the contribution to the 
uncertainty budget were derived from the way uncertainty components were combined. 
This information can be used to detect possible mistakes in calculations and can be 
further used for optimisation of costs or uncertainty magnitude reduction.

Examples of proposals for optimisation are:

1.	 decreasing measurement uncertainty: calibrate the chromatography instrument 
in a linear range associated with a smaller relative repeatability (typically at 
higher concentrations);

2.	 cost reduction: use cheaper (more uncertain) calibration standards that would not 
affect significantly (uw/w) value.
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• The MU value (0.36 mg kg-1; Uw/w = 15.3 %) is only applicable
to the studied mass fraction (i.e. 2.35 mg kg-1) and calibration
curve since uinter was estimated in repeatability conditions.

• The developed MU model:

(....) is only applicable to undiluted samples with mass fractions
within the calibration range and analysed using the studied daily
calibration.

• The relative MU value (Uw/w = 15.3 %) is fit for intended use
since is smaller than the relative target MU (i.e. 20 %).
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3.5. Conclusion

The expanded uncertainty estimated by the modelling approach is only applicable to this 
respective measurement as uinter varies with the concentration level and daily calibration 
curve.

The developed model for the combination of uncertainty components is not applicable 
for samples subjected to dilution before ion chromatographic determination. In such 
cases, the uncertainty associated with sample dilution must be added to the uncertainty 
budget. Since the relative expanded uncertainty (i.e. 15 %) is smaller than the relative 
target uncertainty (i.e. 20 %), the measurement is fit for the indented use. 
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Slide 63Uncertainty Principle 4.03© European Union, 2010

4. Highlights
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Slide 64Uncertainty Principle 4.03© European Union, 2010

• Measurement uncertainty (MU) does not imply doubt about the validity
of a measurement; on the contrary, knowledge of the uncertainty implies
increased confidence in the validity of a measurement result.

(…)

4. Highlights

• MU defines a tolerance around the ‘measured quantity value’ that
should encompass the ‘true value’ of the measurand with known
probability.

• MU is essential for the objective and transparent evaluation of the
measurement result meaning.

• Different approaches for the evaluation of the MU based on GUM [5]
principles are available depending on the used information.
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Measurement uncertainty — Part II Approaches 
to evaluation
Part II of the presentation on measurement uncertainty (Approaches to evaluation) explains 
and demystifies the approach of the ISO-GUM (Guide to the expression of uncertainty 
in measurement) [5] used to estimate and report the uncertainty of a measurement result 
obtained following a specific measurement procedure. A clear description of all the 
steps needed in the evaluation of uncertainty is presented with respective examples. The 
modelling approach for the estimation of measurement uncertainty is compared with the 
single laboratory validation and interlaboratory validation approaches. This presentation 
gives guidance on the selection of the appropriate approach for different purposes and 
draws attention to the critical issues when applying the various approaches.
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Uncertainty of
Measurement

Part II Approaches to Evaluation

Last updated - January 2011

The aim of this presentation is to put forward the different approaches to the evaluation of 
uncertainty. The different approaches are presented mainly according to the EUROLAB 
Technical Report No 1/2007, Measurement uncertainty revisited: Alternative approaches 
to uncertainty evaluation [8].
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Slide 2Uncertainty_Approaches-2© European Union, 2011

Aim

• To present the three main approaches to the
evaluation of measurement uncertainty (MU)
based on the GUM [5] (*) principles

• To give guidance on the selection of approach for 
different purposes

• To give guidance on reporting uncertainty over the
concentration range

* JCGM 100:2008  — Evaluation of measurement data — Guide 
   to the expression of uncertainty in measurement (GUM), 2008 
   (http://www.bipm.org) [5].

 

Different approaches can be selected for the evaluation of measurement uncertainty, 
depending on the purpose and available data. In this presentation, three major approaches 
are considered. In practice, it is often a combination of approaches that is used.

Frequently, the uncertainty varies over the concentration range for which the procedure is 
applicable: uncertainty can be reported in absolute (e.g. mg kg−1) or in relative units (%). 
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Slide 3Uncertainty_Approaches-2© European Union, 2011

Overview

• Literature for the evaluation of uncertainty
• Uncertainty as a function of concentration
• Three commonly used approaches:

— modelling approach
— single laboratory validation & QC approach
— interlaboratory validation approach

• Steps in the evaluation of measurement uncertainty
• Evaluation of uncertainty in the measurement of the concentration

of ammonium in fresh water using the three approaches
• Conclusions

In this presentation, an example of a procedure is used to illustrate the three approaches. 
The example is the spectrophotometric measurement of the concentration of ammonium  
in drinking water expressed as N — in the presentation, data and calculations relating to 
the ammonium example are marked in yellow.

Note: ‘Single laboratory validation & QC approach’ is an abbreviation for ‘Single 
laboratory validation and quality control data approach’.



89

Chapter 2 Measurement uncertainty — Part II Approaches to evaluation

Literature for the evaluation of uncertainty 

The application of the GUM general principles to
measurements in chemistry is described in the guides:

Eurachem/CITAC Guide CG4, Quantifying Uncertainty

(http://www.eurachem.org) [6]
in Analytical Measurement, Second edition, 2000 

Nordtest TR537, Handbook for Calculation of Measurement
Uncertainty in Environmental Laboratories, 2004 
(http://www.nordicinnovation.net) [7]

EUROLAB Technical Report No 1/2007,
Measurement uncertainty revisited: Alternative 
approaches to uncertainty evaluation
(http://www.eurolab.org) [8]

Slide 4Uncertainty_Approaches-2© European Union, 2011

These are three important documents detailing some of the various approaches to the 
evaluation of measurement uncertainty in chemical analyses; this presentation is based 
on these. 
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Slide 5Uncertainty_Approaches-2© European Union, 2011

Uncertainty as a function of concentration

• At low concentrations (near the limit of quantification), use
absolute uncertainties
— Uncertainty of results is almost independent of analyte level

• At higher concentrations, use relative or absolute
uncertainties
— Uncertainty of results is, for many instrumental analyses, 

roughly proportional to analyte concentrations at higher 
concentrations

Eurachem/CITAC Guide CG4, Quantifying Uncertainty in 
Analytical Measurement, Second edition, 2000, Appendix E.4 [6]

The uncertainty often varies with concentration: further information can be found in the 
Eurachem/CITAC Guide CG4, Quantifying Uncertainty in Analytical Measurement, in 
the appendix ‘Useful statistical procedures’ [6].
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Measurement uncertainty
Typical variation with concentration

U

mg L-1

Concentration (e.g. mg L-1)

U is constant

Relative
 U   (%

) is
 co

nsta
nt

Limit of Quantification
(LOQ) 

Interval
mg L-1

Expanded
uncertainty

Uncertainty
(abs/rel)

10–20 1 mg L-1 Absolute

>20 5 % Relative?

Typical variation for
 many instrumental

analysis

Example of reporting
uncertainty

Slide 6Uncertainty _Approaches-2© European Union, 2011

In many instrumental analyses (e.g. GC, ICP, AAS, XRF, UV), the variation shown in 
this graph is typical of the variation of uncertainty v concentration. In other techniques 
(e.g. titration, pH), uncertainty is less dependent on the concentration. This has to be 
taken into account when reporting uncertainty for results obtained according to a given 
procedure. A proposal is given on how to report uncertainty for the results obtained 
with an instrumental measurement procedure with a limit of quantification (LOQ) of 
10 mg L–1. 
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Slide 7Uncertainty_Approaches-2© European Union, 2011

Uncertainty by different approaches

• Modelling approach
— Uncertainty of an individual result of a measurement 

using a measurement procedure in the laboratory

• Single laboratory validation & quality control approach
— Typical uncertainty of results obtained using

a measurement procedure in the laboratory

• Interlaboratory validation approach
— Uncertainty of results obtained using the

same measurement procedure in different laboratories

The uncertainties obtained may refer to different measuring conditions

The main difference between the approaches lies in how the uncertainty components 
are grouped in order to quantify them. The uncertainty estimate obtained may refer to 
different situations.
In the modelling approach, the components are mostly quantified individually, whereas 
in the interlaboratory approach, all components are, in general, quantified as one estimate 
— the reproducibility standard deviation. In the single laboratory validation and quality 
control data approach, the components are grouped into a few major components.
The modelling approach mainly refers to a particular measurement result. Thus, it is 
possible to obtain the uncertainty estimate specifically referring to this particular 
measurement result under repeatability conditions.
The single laboratory validation and quality control data approach uses data gathered over 
a long period of time in your own laboratory. A preliminary evaluation of measurement 
uncertainty can be performed using the validation data (mainly including short-term 
precision and trueness data). The uncertainty can be re-evaluated later after routine 
use of the procedure, adding in quality control data. An uncertainty estimate is derived 
from results obtained using this procedure in your laboratory under within-laboratory 
reproducibility conditions (intermediate precision).
The interlaboratory validation approach uses data gathered from several laboratories 
on one occasion — resulting in an uncertainty estimate for the results obtained using 
this procedure by any competent laboratory is calculated. Measurement results must be 
obtained under reproducibility conditions.
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Summary of approaches to the
evaluation of MU (*)

Specify the measurand and the procedure
Identify the sources of uncertainty

Intralaboratory Interlaboratory

Modelling
approach

Single laboratory
validation

&
quality control

approach

Proficiency
testing approach

ISO 17043
ISO 13528

Interlaboratory
validation approach

ISO 5725
ISO 21748

oNseY
Procedure

Performance
Study PTMathematical

model?
PT or procedure

 performance
 study?

(*) Graph outline from EUROLAB Technical Report No 1/2007 (http://www.eurolab.org) [8].
Slide 8Uncertainty_Approaches-2© European Union, 2011

In the EUROLAB report [8], the different approaches are presented graphically, a part of 
this is shown here. This report also includes the proficiency testing approach (PT), which 
is not generally recommended since, in most cases, laboratories that participate in a PT 
use different procedures.

If we choose to evaluate uncertainty in our own laboratory, we use an intralaboratory 
approach. If we use a standard method exactly according to the scope of the published 
data from an interlaboratory validation (performance study according to ISO 5725:1994) 
[13], we could choose to use an interlaboratory approach.

Note that all the approaches have the first steps in common.
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1. Specify the measurand

3. Identify the sources of uncertainty

Slide 9Uncertainty_Approaches-2© European Union, 2011

Steps in the evaluation of MU

These steps are applicable to all MU evaluation approaches:

4. Quantify the uncertainty components

5. Calculate the combined standard uncertainty

6. Review the uncertainty budget

7. Calculate the expanded uncertainty

Separate
approaches

2. Specify the measurement procedure and measurement function

The following are the steps involved in the evaluation of measurement uncertainty.

Most of the steps are the same for all approaches — Step 4 is different in the three 
approaches. Step 6 mainly refers to the modelling approach but, for all approaches, 
the obtained uncertainty can be compared with the target uncertainty and also with an 
uncertainty obtained in another laboratory.



95

Chapter 2 Measurement uncertainty — Part II Approaches to evaluation

Slide 10Uncertainty_Approaches-2© European Union, 2011

Example
Measurement of ammonium concentration

Procedure
EN ISO 11732:2005 — Water quality — Determination of 
ammonium nitrogen — Method by flow analysis (CFA and FIA) 
and spectrometric detection [15]

Scope
This International Standard specifies a suitable method for the
measurement of the ammonium nitrogen concentration in various 
types of waters (such as fresh, ground, drinking, surface and waste 
waters) in the range 0.1 to 10 mg L-1  (undiluted sample)

Absolute or relative uncertainty?
At this low level of 0.2 mg L-1, we will evaluate both relative
and absolute uncertainty.

This is the procedure we will use for a comparison of the approaches. We will 
evaluate uncertainty estimates at low concentrations — 0.2 mgL–1. Close to the limit 
of quantification (LOQ), we would normally evaluate an absolute uncertainty. In this 
case, we are not sure which to choose so we will evaluate both absolute and relative 
uncertainty estimates.
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Slide 11Uncertainty_Approaches-2© European Union, 2011

Measurand = quantity intended to be measured

Example:

All approaches Step 1 Specify the
measurand

Mass concentration (mg L-1) of ammonium
expressed as nitrogen in a laboratory
sample of fresh water

(Denoted as Csample)

Target uncertainty — if available, state the target uncertainty
    (e.g. 15 %).

Step 1 Specify the measurand: with a target uncertainty of 15 %, the method is fit for its 
intended purpose. 
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Procedure: EN ISO 11732:2005
— Water quality — Determination of ammonium nitrogen — Method

by flow analysis                      and spectrometric detection

Dilution of sample, fdil

Photometric reaction

Instrumental
measurement, Asample

Preparing a calibration curve

Photometric reaction

Use the measurement 
function for calculation of

the result, Csample

All approaches Step 2
Specify the measurement procedure

Instrumental measurement,
calculation of slope b1,

intercept b0

Slide 12Uncertainty_Approaches-2© European Union, 2011

(CFA and FIA) [15]

Here, the steps in the procedure for the measurement of the concentration of ammonium 
nitrogen in drinking water are presented.
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Slide 13Uncertainty_Approaches-2© European Union, 2011

All approaches Step 2
Measurement model — the calibration curve  

Sample

0.186
1.0

1.0

The slide shows the calibration curve — absorbance v concentration and also the results 
of linear regression. 

In this example, the limit of quantification (LOQ) is 0.1 mg L–1.
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Slide 14Uncertainty_Approaches-2© European Union, 2011

All approaches Step 2
Measurement model

• Measurement model

Asample is the absorbance of the dye solution obtained from the
sample
b and a are the slope and intercept of the calibration curve
fdil is the dilution factor

Ccont is the contribution due to possible contamination

In many cases, a measurement function has to be further developed and extended to 
take into account uncertainty components that were not taken into account in the initial 
measurement function. Corrections are assumed to be in the measurement function 
to take account of all recognised, significant systematic effects. The slide shows the 
measurement function used to calculate the result extended with a factor (ΔC) to 
take into account contamination. For the evaluation of measurement uncertainty, the 
measurement function has to be extended since the model does not take into account 
contamination — an important source of uncertainty, estimated by variation in the blank 
results. The uncertainty of ΔC is estimated from analysing a blank sample on different 
days and calculating the standard deviation in concentration units — this will be the 
standard uncertainty of ΔC.
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Slide 15Uncertainty_Approaches-2© European Union, 2011

All approaches Step 3
Identify the sources of uncertainty — NH4

contdil
sample

sample

)(
Cf

b
aA

C +=

• Contamination

• Volumetric operations

• Interferences
• Instrument repeatability and drift

• Ammonium chloride purity
• Volumetric operations
• Instrument repeatability and drift

The slide shows the different sources of uncertainty that are identified and attributed to 
the input quantities. Variables a and b are related to the calibration function:

Absorbance = b * concentration + a
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Slide 16Uncertainty_Approaches-2© European Union, 2011

All approaches Step 3
 Identify the sources of uncertainty

• Sample effects
— Varying recovery

• Computational effects
— Selection of calibration model

• Blank correction including
uncertainty of the blank

• Operator effects
• Random effects

A general list of possible sources (*)
— not necessarily independent:

• Sampling and subsampling
• Storage conditions

— Contamination/losses
• Instrument effects

— Memory effects
— Interferences

• Reagent purity
• Assumed stoichiometry
• Measurement conditions
(*) From Section 6, Eurachem/CITAC Guide CG4, Quantifying Uncertainty in 

Analytical Measurement, Second edition, 2000 (http://www.eurachem.org) [6].

All approaches need to take into account all sources of uncertainty: the slide shows an 
exhaustive list of possible sources of uncertainty. 
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Now, modelling approach: Step 4

1. Specify the measurand

3. Identify the sources of uncertainty

4. Quantify the uncertainty components

5. Calculate the combined standard uncertainty

6. Review the uncertainty budget

7. Calculate the expanded uncertainty

Steps in the evaluation of the MU
Modelling approach

Modelling
approaches

Slide 17Uncertainty_Approaches-2© European Union, 2011

2. Specify the measurement procedure and measurement function

After the first three steps, in Step 4, the uncertainty components are quantified. 
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Slide 18Uncertainty_Approaches-2© European Union, 2011

Modelling approach Step 4
Quantify the uncertainty components —  NH4

To estimate u(a) and u(b), see Eurachem/CITAC Guide CG4 [6].

a

b

u

Step 4 with the modelling approach: the table shows the results of the calculation of the 
uncertainty of the individual components. The contamination issue (0.004 mg L–1) is 
important in ammonium levels below 0.3 mg L–1.

The slope and intercept are correlated but, in this case, the correlation between the slope 
and intercept was checked and had no significant influence.

Note: Absorbance is unitless but it is often reported in Absorbance Units (AU).
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Several approaches can be followed to combine the estimated
uncertainties:

• Law of propagation of uncertainty
• Numerical methods

Kragten method (*) (easily implemented in a spreadsheet) (*)
Dedicated software

Using, in this case, the dedicated software to calculate combined
standard uncertainty uc = 0.006 mg L-1

Modelling approach Step 5
Calculate combined standard uncertainty

(*) Analyst, 1994, 119, pp. 2161–2166 [17] and  Eurachem/CITAC Guide CG4, 
Quantifying Uncertainty in Analytical Measurement, Second edition, 2000,
Appendix E.2 [6].

Slide 19Uncertainty-Approaches-2© European Union, 2011

The calculation of combined standard uncertainty can be carried out in several ways: 
more information about possible calculation methods is available in Eurachem/CITAC 
Guide CG4, Quantifying Uncertainty in Analytical Measurement [6].
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Major contributions :

• Repeatability and interferences
xxx(Asample)
• Calibration (a and b)
• Contamination ( Ccont)

Modelling approach Step 6
Review the uncertainty budget

A sample

48 %

a
20 %

b
18 %

f dil

2 %

C cont

11 %

contdil
sample

sample

)(
Cf

b
aA

C +=
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Concentration level
0.2 mg L-1

The slide illustrates a summary of the uncertainty budget and shows the individual 
contribution of each uncertainty component as a percentage of the combined standard 
uncertainty in the concentration of ammonium at a concentration level of 0.2 mg L–1. The 
ΔC contribution of 0.004 mg L–1 to the overall uncertainty will decrease with increasing 
concentration. 
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Slide 21Uncertainty_Approaches-2© European Union, 2011

Problems with modelling applied
to chemical measurements

• Often not readily modelled
• Uncertainty contributions not readily quantified

Because:
• it is often difficult to separate the analyte from the matrix;
• interference from other components of the sample;
• sample inhomogeneity.

Failure to correctly account for all significant uncertainty
sources leads to underestimation of uncertainty!

Let’s move to next approach — single laboratory …

In order to obtain a reliable measurement uncertainty, all major contributing components 
need to be included. Using the modelling approach, you need to know the procedure in 
detail in order to be able to include all major components. 
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Single laboratory validation & QC approach
Step 4 — different scenarios

Scenario 1
New procedure is introduced

in the laboratory

Similar approach as
scenario 2 but no QC data
are available (the validation 
 data is used)

Scenario 2
Procedure already in place

Estimation of uncertainty or update
of an existing uncertainty
estimate using validation and
quality control data

The following
example is based

on scenario 2

Example shown in detail 
in Nordtest 537 (2004) 

(http://www.nordicinnovation.net)
[7]

Slide 22Uncertainty_Approaches-2© European Union, 2011

Here, we have two scenarios — a new procedure or a procedure already in place. In 
this example, we use data from a procedure which has been in use at the laboratory for 
several years — scenario 2. 

A robust uncertainty estimation using this approach needs a large amount of data. A 
first evaluation of an uncertainty estimate can be made using validation data and then, 
subsequently, this value can be updated when the procedure has been in use in the 
laboratory for a longer time.
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Single laboratory validation & QC approach 
Step 4 Quantify the uncertainty components

In this approach, the sources of uncertainty are grouped into:

The whole range of variation encountered during the typical use of
the measurement procedure:
range of expected values and sample types within the scope of the
procedure during routine use. The within-laboratory reproducibility (*) 
sRw can be obtained from quality control data at different concentration 
levels (scenario 2).

The overall bias under within-laboratory reproducibility (*) conditions:
the use of certified reference materials (CRM) comparison with
reference procedures, spiking and PT can be used to evaluate the
component of uncertainty associated with trueness (i.e. u(bias)).

(*) Note: The VIM3 [1] term for within-laboratory reproducibility is
‘intermediate precision’.

In this approach, the sources of uncertainty are grouped into two major components: 
precision and trueness. For both components, the laboratory must investigate the variation 
in the size of the components ensuring the scope of the procedure is fully covered (i.e. 
concentration range and different matrices). Anything that changes the results should be 
varied representatively.
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Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

Ladder illustrating the uncertainty components

u(Rw)

Biasu(bias)
Procedure

Lab

Run

 Repeat-
ability

Measurement
Uncertainty

Within-laboratory
reproducibility

The two major components in the single laboratory validation & QC approach are the 
within-laboratory reproducibility and bias. 

•	 Rw includes repeatability and between-days (runs). In the repeatability standard 
deviation, the sample inhomogeneity is included. 

•	 Bias — both, laboratory and procedural bias are included. 

Note: Throughout this part of the presentation, the original notation as in the Nordtest 
handbook [7] is used.
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• u(Rw) is the uncertainty component that takes into account long-
term variation of results — within-laboratory reproducibility (sRw)

• Ideally, for one laboratory using one procedure:
— different days (longer time will give a more robust estimation)
— different technicians
— different reagent batches
— all instruments (several may be used within the laboratory)
— sample similar to test samples (matrix, concentration, homogeneity)
— …

Repeatability < Within-laboratory  reproducibility  <  Combined uncertainty

        sr       <            sRw              <             uc

Important:

Slide 25Uncertainty_Approaches-2© European Union, 2011

Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

For a reliable estimate of within-laboratory reproducibility, it is necessary to look at the 
performance of the procedure in routine use in the laboratory over a long time period. 
The information from the quality control data produced for the applied internal quality 
control supplements the validation data. 
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If the QC sample covers the whole procedure
u(Rw) = sRw at this level

• the warning limits (2s) of X-chart
— using a stable control sample covering

the whole measurement procedure

Normally, at both low and
high concentration but

here, at low concentration

The control sample
analysis has to cover the
whole analytical process

Single laboratory validation & QC approach 
Step 4 Quantify the uncertainty components

Slide 26Uncertainty_Approaches-2© European Union, 2011

Ammonium in fresh water
From the X-chart at 0.2 mg L-1: control limits are set to  ± 3.34 %

Thus u(Rw) = 3.34 %/2 = 1.67 %

With quality control in place, the control limits will have been established. At this 
concentration level, the uncertainty component for the within-laboratory reproducibility 
is obtained from the X-chart by dividing the setting of the warning limit (±) by two.
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• Potential bias can be estimated:
— from analysis of the several samples with a reference

procedure
— from analysis of several certified reference materials (CRM)
— several PT rounds
— from spiking experiments

• Potential bias may have to be estimated separately for
different sample types and different concentration levels

Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

Ideally, several reference measurements,
several certified reference materials, several

PTs, etc., because the bias will, in many cases,
vary with matrix and concentration.

Slide 27Uncertainty-Approaches-2© European Union, 2011

There are several ways to obtain an estimate of the bias within the scope of the procedure. 
A reliable estimate of the trueness of a laboratory measurement procedure can be 
obtained by analysing the test samples using a reference procedure and comparing the 
results. However, in most cases, this is not possible. If this is not possible, other ways of 
estimating bias within the scope of the procedure are proposed.
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2
ref

2
bias )()( CuRMSbiasu +=

This component
accounts for the

uncertainty of the
average bias of the
laboratory results

from the Cref

This component
accounts for the

average uncertainty
of the reference

value Cref

Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

Slide 28Uncertainty_Approaches-2© European Union, 2011

In this case, the bias is estimated from several different types of samples. The uncertainty 
component related to bias is then the combined uncertainty of reference values u Cref( )   
and the root mean square of the different bias uncertainty estimates obtained. The RMSbias 
formula is slightly different if only one certified reference material is used.
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CRM

2

bias

)(
n
bias

RMS i=

Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

CRM

2
 ref

ref

)(
)(

n
Cu

Cu i=

Bias and uncertainty of reference value are expressed as a relative
value

100)((%)
ref

ref=
x

xxbias i

“Averaging” is done using the root mean square:

100
2

)(,%)(
ref

ref
ref =

x
CUCu

NOTE:  n refers to the number of CRMs used
(e.g. number of different  bias estimates).
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The calculations can be performed to provide an uncertainty estimate expressed as 
an absolute or relative uncertainty, depending on the variation of the uncertainty of 
the result with the concentration (see the slide ‘Measurement uncertainty — Typical 
variation with concentration’). All components in the evaluation of measurement 
uncertainty should be expressed in the same way: absolute or relative and in the same 
unit.
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Single laboratory validation & QC approach
 Step 4 Quantify the uncertainty components

For ammonium, no CRMs are available: therefore, PT results are used.

PT
Exercise

N o m i n a l
value xref

Laboratory
result xi

“Bias” CVR N u m b e r
of labs

Year g L-1 g L-1  %  %

1999 1 81 83 2.5 10 31
2 73 75 2.7 7 36

2000 1 264 269 1.9 8 32
2 210 213 1.4 10 35

2001 1 110 112 1.8 7 36
2 140 144 2.9 11 34

Mean value + 2.20 34

RMS   2.26 8.9 —
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In the ammonium example, no reference measurements or certified reference materials 
are available. Therefore, the results from participation in proficiency testing are used 
to evaluate uncertainty. The drawback is, of course, that the assigned values are not 
always traceable. However, in many cases, where there is considerable experience with 
the measurement procedure, the median of the results from a proficiency testing can be 
considered a good estimate of the true value. 
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 Single laboratory validation & QC approach
Step 4 Quantify the uncertainty components

Root mean square of bias
Ammonium in drinking water

26.2 %9.27.25.2

PT

222

bias =
+++

=
n

RMS

Uncertainty of the assigned value — standard deviation of the mean

5 %.1
34
9.8 % )(

Lab

R
ref ===

n
CVCu
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The uncertainty component u(bias) for the ammonium example is calculated from 
RMSbias and the uncertainty of the assigned values. The CVR is the mean or median value 
of the CVR for the proficiency testing rounds. The different CVR values should not be 
significantly different over the chosen concentration interval. 
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Slide 32Uncertainty_Approaches-2© European Union, 2011

The main equation:
22

wc )()( biasuRuu +=

Within-laboratory
reproducibility

Uncertainty of the estimate
of the laboratory and the

procedure bias

Single laboratory validation & QC approach
Step 5 Calculate combined standard uncertainty

Ammonium
in fresh
water

The combined standard uncertainty of the concentration of ammonium in the sample is 
calculated by combining the two uncertainty estimates u(Rw) and u(bias). 
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Now, interlaboratory approach: Step 4

1. Specify the measurand

3. Identify the sources of uncertainty

4. Quantify the uncertainty components

5. Calculate the combined standard uncertainty

6. Review the uncertainty budget

7. Calculate the expanded uncertainty

Steps in the evaluation of the MU

Interlaboratory
approach

Slide 33Uncertainty_Approaches-2© European Union, 2011

2. Specify the measurement procedure and measurement function

The first two approaches now have been presented — the modelling approach and the 
single laboratory validation and quality control data approach. The third approach is the 
interlaboratory approach. 
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Interlaboratory validation approach Step 4
Quantify the uncertainty components

Consider results from a number of laboratories using similar test 
items and the same procedure as stated in ISO 5725:1994 — 
Accuracy (trueness and precision) of measurement 
methods and results [13]:

• the data are often found in reports of the interlaboratory
validation or standardised procedures (e.g. ISO);

• procedure bias data may be available:

— procedure bias is usually small.

The laboratory has to investigate a possible laboratory bias.

The interlaboratory approach uses the sR values obtained from interlaboratory validation 
performed according to ISO 5725:1994 [13]. The procedure has usually been refined 
before the interlaboratory validation so that the bias is insignificant.
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Interlaboratory validation approach Step 4
Quantify the uncertainty components

sR or  CVR

Biasu(bias) Procedure

Lab

Run

 Repeat-
ability

Measurement
Uncertainty

Reproducibility

In this approach, three major components (i) repeatability, (ii) day-to-day variation and 
(iii) laboratory bias are grouped into one.
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Interlaboratory validation approach Step 4
Quantify the uncertainty components

EN ISO 11732:2005
 — Water quality — 
Determination of 

ammonium nitrogen
[15]

CVR
 9.81 %

 at

0.28 mg L-1

Interlaboratory studies according to ISO 5725:1994 [13] typically provide the repeatability 
standard deviation sr and reproducibility standard deviation sR and may also provide an 
estimate of trueness (measured as bias with respect to a known reference value). The 
application of these data to the evaluation of measurement uncertainty is discussed in 
detail in ISO 21748:2010 [14]. In this slide, the results from an interlaboratory study as 
reported in EN ISO 11732:2005 [15] are shown.

The sample in the previous examples had a concentration of approximately 0.2 mg L–1-1 
— in this case, the nearest is 0.28 mg L–1.
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Interlaboratory validation Step 5
Calculate combined standard uncertainty

If the interlaboratory study has been performed according to
ISO 5725:1994 [13], then according to ISO 21748:2010 (*)

          uc = CVR

(*) ISO 21748:2010 — Guidance for the use of  repeatability, reproducibility 
and trueness estimates in measurement uncertainty estimation [14].

Ammonium in fresh water

at 0.215 mg L-1

uc = 10 % or 0.021 mg L-1

It is recommended that additional uncertainties associated with factors not adequately 
covered by the interlaboratory comparison (ILC) are identified and evaluated, particu
larly: (i) sampling (ILC rarely include a sampling step); (ii) sample pretreatment (e.g. ILC 
test samples are homogenised prior to circulation); (iii) variation in conditions (variation 
between conditions when ILC samples are measured and conditions used when test 
samples are measured); (iv) changes in sample type (in cases where the properties of the 
ILC sample differs from those of test samples, this needs to be considered). In order to 
use the CVR value obtained in the ILC, the laboratory also has to establish that they can 
achieve a comparable repeatability standard deviation sr.
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PT approach

In PT studies, laboratories may use different measurement
procedures.

• The standard deviation of the participating laboratories, sPT, can
be used as a very crude initial estimate of uncertainty (works 
only if the laboratories use the same procedure).

The use of the PT approach is not generally advisable.
• In this example, CVPT are generally 9–11 % in this

concentration range (i.e. similar to the CVR given in the
interlaboratory comparison).

This approach is also presented in the EUROLAB report [8], but is not generally 
recommended since, in most cases, laboratories use different procedures when analysing 
proficiency testing samples.
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Separate
approaches

Now, all approaches: Step 7
1. Specify the measurand

2. Specify the measurement procedure and measurement function

3. Identify the sources of uncertainty

4. Quantify the uncertainty components

5. Calculate the combined standard uncertainty

6. Review the uncertainty budget

7. Calculate the expanded uncertainty

Steps in the evaluation of the  MU
All approaches

Slide 39Uncertainty_Approaches-2© European Union, 2011

The three different approaches have now been presented for Steps 1 to 6. 
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All approaches Step 6
Calculate expanded uncertainty

The expanded uncertainty U is obtained by multiplying the
combined standard uncertainty uc(y) by a coverage factor k

Ammonium expressed as nitrogen:

the interval (y – U , y + U) is the range that may be expected to
encompass approximately 95 % (when k = 2) of the distribution
of values that could reasonably be attributed to the measurand.

Csample = (0.215 ± U) mg L-1
cukU =

Approach k U mg L-1 U relative %
Modelling 2 0.012 6
Single laboratory  2 0.014 7
Interlaboratory 2 0.043 20

Slide 40Uncertainty_Approaches-2© European Union, 2011

In Step 7, the expanded uncertainty is calculated. Here, a comparison with the target 
uncertainty, if available, is recommended. From the EU Drinking Water Directive 
(Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for 
human consumption) we estimated a target uncertainty of 15 % at a level of 0.5 mg L–1. 
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Comparison of the different approaches

Ammonium in fresh water — low levels 0.2 mg L-1

According to ISO 7150-1:1984 [18] or EN ISO 11732:2005 [15]

Modelling Single 
laboratory

validation &
QC

Proficiency
testing

Interlaboratory
data

based on ...

GUM
principles

 6 %   7 %    20 % 18–22 %

These uncertainties may refer to different measuring conditions.

Slide 41Uncertainty_Approaches-2© European Union, 2011

These uncertainties refer to different measuring conditions (slide 8).

The different conditions are: (i) repeatability (modelling); (ii) within-laboratory 
reproducibility (single laboratory validation & quality control data; and (iii) 
reproducibility (interlaboratory and proficiency testing). In the example presented, all 
the proficiency testing participants used the same EN ISO 11732:2005 procedure [15]. 
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Conclusions

• If you have
— Competence and time
— Data on all important influencing quantities

• Use the Modelling approach.

• If you have
— Validation data
— Quality control data and results from bias estimates

(reference  procedure, CRM, PT, spiking)
• Use the single-laboratory validation approach.

• If you are using a highly standardised procedure within its
scope

• Use the Interlaboratory validation approach.

Depending on the data available, different approaches for the evaluation of measurement 
uncertainty can be chosen. In order to use the interlaboratory approach, the laboratory 
must demonstrate its competence is equivalent to those involved in the interlaboratory 
validation.

If target uncertainty is available, the fitness for purpose regarding uncertainty can be 
assessed. 
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Final message

One can choose different
approaches for the evaluation

of uncertainty depending on the
purpose and available data.

NOTE
The evaluated uncertainty may refer to

different measuring conditions.

Depending on the purpose and the available data, different approaches for the evaluation 
of measurement uncertainty evaluation can be selected.

If detailed knowledge of the different uncertainty components is needed, the modelling 
approach should be the first choice.

When data are available in the laboratory (validation, quality control), a single laboratory 
validation and quality control data is a possible approach.

In most cases, a laboratory using a standard method within its scope should use the 
interlaboratory approach.

The uncertainties obtained refer to different measuring conditions: (i) repeatability 
conditions (i.e. uncertainty for one result obtained in a laboratory); (ii) intermediate 
precision conditions (within-laboratory reproducibility), a typical uncertainty for results 
using the procedure under routine conditions in one laboratory; (iii) reproducibility 
conditions, a typical uncertainty for results from any competent laboratory using this 
procedure.
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Statistics for analytical chemistry — Part I

The aim of this presentation is to focus on some statistical tools that are required for 
the evaluation of uncertainty and the interpretation of interlaboratory comparisons 
(ILC). The following topics are presented: average, standard deviation, population 
distribution (normal, rectangular and triangular), law of propagation of uncertainty, type 
of uncertainties (A and B) and scoring of ILC. The proper understanding of these issues 
is essential to achieve a correct evaluation of the ‘combined uncertainty’ compliant with 
GUM. Several examples are discussed in detail. 
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Statistics 
for 

analytical chemistry 

Part I 

Last updated - January 2011 

The aim of this presentation is to explain that statistics is a useful tool for data treatment 
and provides means of reaching objective decisions. 
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Content I 

    

Part 1: 

• Statistics of repeated measurements 

• Statistics for the estimation of measurement uncertainty 

• Significance tests 

• Reporting of measurement results                                    

Statistics is a very broad field. The essential statistics required for quality control, 
measurement uncertainty and validation of analytical methods are presented in two 
presentations dedicated to the use of statistics in analytical chemistry. The topics 
discussed in the first presentation are shown in this slide.
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Part 2: 

• Regression and correlation 

•  and  errors 

• Limit of detection 

• Control charts 

• Analysis of variance (ANOVA)  

Content II 

The statistical terms covered in the second presentation are listed on this slide.
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Statistics of repeated measurements 

• Normal distribution  

• Calculation of the most common statistical parameters 

Statistics for the estimation of measurement uncertainty  

Significance testing  

• Is a result statistically significantly different? 

Reporting of measurement results 

• Significant figures 

• Rounding results 

Overview 

This presentation includes:

•	 the most important concepts and terms used; 
•	 calculations of the most common statistical parameters; 
•	 basic statistics for the evaluation of uncertainty;
•	 significance testing;
•	 reporting analytical results.
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Statistics 
of 

repeated measurements 
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Mass fraction of  
lead in wine  

(ng g-1) 
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The table shows a typical set of analytical data — a series of repeated measurements of 
the lead content in a wine sample, obtained in one analytical laboratory. As expected, 
random variation results in a set of slightly different measured values.

The chart shows a histogram of the obtained results. Each bar represents the number 
of measurements falling in a given range (i.e. the frequency of occurrence). Hence, the 
chart shows the distribution of the obtained results.

If more data had been available, the histogram would have conveyed a more definite 
impression of the distribution and would be more symmetric.

Two points to stress here are:

•	 data are concentrated in the central region of the histogram;
•	 the distribution is roughly symmetrical. 
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Frequency distribution

0
1 000
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Normal distribution 

Several sources contribute
to the measurement results.  

 
 

In practice, we can assume 
that all measurements are 

normally distributed. 

Finally, with a very large amount of data and a large number of ranges, the shape of the 
underlying population becomes clear. One can think now of the population distribution 
as being described not by a histogram but by a smooth curve, the function of which we 
could, in principle, determine.

The Normal Distribution
As the name implies, the normal distribution describes the way results are commonly 
distributed. The very large majority of measurements subject to several different effects 
(environment, reagent variation, instrument ‘noise’, etc.) will, repeated frequently, fall 
into a normal distribution, with most results clustered around a central value and a 
decreasing number at greater distance. The distribution has potentially an infinite range 
— values may turn up at great distances from the centre of the distribution.
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Normal distribution 

 
 
The normal distribution, also called Gaussian distribution,  
is a continuous probability distribution and can be closely 
approximated by a curve called the ‘normal distribution curve’ 

The function can be described by μ (arithmetic mean of a 
population) and  (standard deviation of a population).

 
 characterises the dispersion of the values. 

y = 1

2
e

(x µ)2

2 2

Normal distribution occupies a special place among all statistical distributions.

All quantitative parameters derived from measurements have probability distribution 
functions (i.e. they are not known exactly). Usually, the analyst would like to obtain 
the true value from the measurement, but it is never possible. If the measurements are 
repeated sufficiently, the expectation is that the mean value will be close to the true 
value, with the actual results spread around it.

A normal distribution implies that if a large number of measurements of the same 
system is made, the values will be distributed around the mean value, and the frequency 
of a result will become lower the further away the result is from the mean. A normal 
distribution is a probability curve where there is a high probability of an event occurring 
near the mean value, with a decreasing chance of an event occurring as one moves away 
from the mean.

The curve of the normal distribution is bell shaped and is completely determined by only 
two parameters: the central value μ and the standard deviation σ. 
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Sample and population 

– 4 –2 µ 2 4 

Fr
eq

ue
nc

y 

± 1  

± 2  

Population: all possible data are available, so µ and  
can be calculated 

Sample: only a subset of the population is known, so x and 
s can be determined as estimates of µ and  

In general, we do not have access to the entire population of measurement data. When 
we are asked to measure the concentration of an analyte, we usually make a limited 
number of measurements on test portions and use the results as our best estimate of the 
true analyte concentration.

The limited number of measurements on test portions represent a sample of the total 
population of results.

If the whole population is known, the true mean value μ and standard deviation σ can be 
calculated. If only a sample is known, these parameters have to be estimated. 
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Distribution of repeated measurements 

x = 1
n

(xi )
i=1

n

s(xi ) = 1
n 1

xi x( )
i=1

n 2

For a set of n values xi 

V (xi ) = s2 (xi )

Variance 

Standard deviation Mean value 

 
 Relative standard deviation or coefficient of variation  

RSD = s(xi )
x

or RSD (%) = CV % = s(xi )
x

100

Standard deviation of the mean  

s(xi ) = s(xi )
n

The distinction between sample and population is important because it affects how some 
statistical parameters are calculated. In this presentation, only statistical parameters 
related to samples from a population are discussed. 

For a set of n values xi, the following statistical parameters can be defined.

•	 The mean value (arithmetic average) of all measurement results. If the sample 
is randomly taken then the average is the best estimate of the population mean. 

•	 Standard deviation is the positive square root of the variance.
•	 Standard deviation of the mean is an estimate of the standard deviation of the 

mean values that would arise if repeated samples were taken from the population. 
Standard deviation of the mean is smaller than the standard deviation of a sample. 

•	 Variance: the variance measures the extent to which the results differ from each 
other; the larger the variance, the greater the spread of data is. 

•	 The relative standard deviation is a measure of the spread of data in comparison 
to the mean of the data.
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Measured results  (xi) 
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Standard deviation 
of n measurement results 

n = 20 
 n = 19 

 

standard deviation 
of the mean 

standard deviation 

mean value 

This slide shows the statistical parameters for a set of 20 randomly distributed repeated 
measurements.

Standard deviation of the individual result is given by the following equation:

s x
n

x xi i
i

n

( ) =
−

× −( )
=

1
1

2

1

n − 1	 is the degrees of freedom of the standard deviation (represented by ν).
s x( ) 	� is the standard deviation of the mean of n repeated measurements, given by the 

equation:

s x
s x

n
i( ) =

( )
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The normal distribution is characterised by the parameter μ, which describes the centre, 
or location of the distribution. However, μ is not sufficient to completely characterise 
the distribution, since several different distributions could be located at the same point. 
Therefore, a second parameter σ to measure the spread, or dispersion, of the distribution 
is needed. When dealing with a sample of the population, we only have estimates of μ 
and σ (i.e. x  and s respectively).

For a normal distribution with sample mean x  and standard deviation s, approximately 
68.3 % of the population values lie within ± s of the mean, approximately 95.4 % of the 
population values lie within ± 2s of the mean value and approximately 99.7 % of the 
population values lie within ± 3s of the mean.



142

Analytical measurement: measurement uncertainty and statistics

Statistics 4.0 © European Union, 2010 Slide 13 

Statistics for the estimation 
of 

measurement uncertainty 

The next few slides show the statistics required for the estimation of measurement 
uncertainty.
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Expanded uncertainty, U, is obtained by multiplying the 
combined standard uncertainty by a coverage factor k: 

uc
2 (y) = f

xi

2

u(xi )( )2

U(y) = k uc (y)
(often k = 2)  

When there is no correlation between input quantities,
the combined standard uncertainty is evaluated as the 
square root of the combined variance according to the 
law of propagation of uncertainty:  

Combined and expanded 
uncertainty according to GUM 

When there is no correlation between input quantities, the combined standard uncertainty 
is evaluated as the square root of the combined variance according to the law of 
propagation of uncertainty. All standard uncertainties can be combined with the use of 
the law of propagation of uncertainty.

In order to cover a larger fraction of likely values than those covered in the range of 
one standard uncertainty, the expanded uncertainty is used. Expanded uncertainty, U, 
is obtained by multiplying the combined standard uncertainty by a coverage factor, k. 
In the majority of analytical applications, a factor k = 2 is used, meaning that expanded 
uncertainty covers approximately 95.4 % of the likely values. To convert an expanded 
uncertainty to a standard uncertainty, the expanded uncertainty value is divided by k.
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Y = f (x1, x2, ..., xn) 

uc
2 (Y ) = f

xi

2

u(xi )( )2

uc (Y ) = Y

x1

u(x1)
2

+ Y

x2

u(x2 )
2

+ + Y

xn

u(xn )
2

Law of propagation of uncertainty
without correlation 

In many cases, a measurand Y is not measured directly, but is determined from n other 
quantities X1, X2, ... Xn through a functional relation f.

Among the quantities Xn, there are usually also a number of corrections as well as 
quantities that take into account other sources of variability, such as different observers, 
instruments, samples, laboratories, and times at which observations are made (e.g. 
different days). Thus, in the equation, the function f should express not simply a physical 
law but a measurement process and, in particular, it should contain all quantities that can 
significantly contribute to uncertainty of a measurement result. The rules of combination 
depend on the form of the differential in the measurement function.
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u(y) = x1 x2

u(x1)
x1

2

+ u(x2 )
x2

2
2

+ u(x3)2

u (y) = u (x1)2 + u (x2 )2
Y = (x1 + x2 )

Y = (x1 x2 )

Y = (x1 x2 )

Y = (x1 / x2 )

u(y)
Y

= u(x1)
x1

2

+ u(x2

x2

2

Y = (x1 x2 )± x3

Y = (x1 / x2 )± x3

Law of propagation of uncertainty 
examples 

Usually two main types of functional relationships are used for the measurement model 
(measurement function):

•	 addition/subtraction — combined uncertainty is obtained as a square root of the 
sum of squared absolute standard uncertainties (root sum of squares);

•	 multiplication/division — combined uncertainty is obtained as a square root of 
the sum of squared relative standard uncertainties. 
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Type A evaluation of uncertainty:      
 statistical analysis of a series of measurements.   

Type A evaluation of uncertainty is based on experiments  
and is quantified in terms of the standard deviation of the 
measured values 

Standard uncertainty = Standard deviation  

Type B evaluation of uncertainty:  
 by other means than statistical analysis  

(previous experiments, literature data, manufacturer’s
information, expert’s estimate)  

 

(GUM [5])

Different ways of estimating uncertainty 

The uncertainty should be quantified in a way that is common to all types of measurements 
in chemistry, since it should be possible to compare different results.

The measurement uncertainty can be determined using statistical or non-statistical 
methods. Therefore, the uncertainty estimate can be one of two categories:

•	 Type A — obtained by statistical analysis of the data from repeated measurements.
•	 Type B — obtained from those sources where the value cannot be defined by 

repeated measurements (other means than statistical analysis of results).

Standard uncertainty from Type A and Type B evaluations are treated in the same way.
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Expression of data 

 

Before combining different uncertainty contributions, all 
uncertainty contributions must be expressed/converted to 
standard uncertainty 

        when available as:         

— standard deviation:          use as is   

— stated range and distribution:    convert  

— confidence intervals:          convert 

— expanded uncertainties:         convert 

In order to carry out uncertainty estimations using the ISO-GUM [5] approach, all the 
uncertainty contributions need to be converted to ‘standard uncertainty’ format. This 
means they all have to be expressed as standard deviations.

If the random variation is evaluated from replicate measurements, the result will be 
presented as a standard deviation (Type A evaluation).

Other uncertainties (e.g. specifications for glassware) may be originally expressed as a 
range; in other instances, a confidence interval is provided at a given confidence level. 
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The value is between the limits: 

 

The expectation: 
 

  
Estimated standard deviation: 

1/(2a)

2a(= ± a)

x 

One can only assume that it is equally probable for the value to 
lie anywhere within the interval. 

Type B Rectangular distribution 

s = u(x) = a / 3

axy ±=

+aa

Very often we have uncertainty data presented in the form of ‘± a’ and the information 
about the distribution is not given. In such a case, it is very appropriate and safe to assume 
a rectangular distribution. The rectangular distribution describes the situation when 
the values could, with equal probability, be anywhere in the given range. Rectangular 
distributions are usually described in terms of the average value and the range (2a, in the 
figure above). A standard deviation can be calculated for this distribution as indicated 
on the slide. 

It is important to note that the area of the rectangle equals 1 = 2*a*1/(2a).
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Certificates or other specification give limits where the value 
could be, without specifying a level of confidence. 

 
‘It is likely that the value is somewhere in that range.’

  
Rectangular distribution is usually described in terms of 
the average value and the range (± a).

 
Example: 
The concentration of a calibration standard is quoted as  
(1 000 ± 2) mg L-1. Assuming rectangular distribution, the 
standard uncertainty is: 

Example of rectangular distribution 

u(x) = a / 3 = 2 / 3 =1.16 mg L-1

Rectangular distribution is usually described in terms of the mean value and the range 
(± a). Certificates or other specifications usually give limits where the value could be, 
without specifying a level of confidence. A truly rectangular distributed uncertainty is 
the uncertainty due to rounding.



150

Analytical measurement: measurement uncertainty and statistics

Statistics 4.0 © European Union, 2010 Slide 21 

      
Distribution used when it is 
suggested that values near the 
centre of range are more likely 
than near to the extremes 

Estimated standard deviation: 

2a (= ± a)

1/a

x 

Type B Triangular distribution 

axy ±=

s = u(x) = a / 6

The triangular distribution describes the distribution of values when it is expected that 
values near the centre of the range are more likely than those near to the extremes. 
Triangular distributions are usually described in terms of the average value and the range 
(2a, in the figure above). A standard deviation can be calculated for this distribution. In 
the case of triangular distribution, it is reasonable to expect that the value is in the centre 
of a given range rather than near to the extremes. It is important to note that the triangular 
area is equal to 1. 
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 Values close to the nominal value are more likely than those 
near the boundaries. 

 
 Example (volumetric glassware) 

 

The manufacture quotes a volume for the flask of  

(100 ± 0.1) mL at T = 20 °C.   
 

Nominal value most probable! 
Assuming triangular distribution the standard uncertainty is: 

If in doubt, use the rectangular distribution. 

Example of triangular distribution 

u(x) = a / 6 = 0.1/ 6 = 0.04 mL

In the example, the manufacture quotes a volume for the flask of (100 ± 0.1) mL at  
T = 20° C. 

Assuming triangular distribution, the standard uncertainty is 0.04; assuming rectangular 
distribution u(x) = 0.06 mL.
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The individual measurement results are distributed around 
the mean value. 

95 % CI = t(0.05,n-1) s / n

The estimate of the mean value ( ) lies within the 
Confidence Interval (CI), with a probability of (1 – ), 

having ‘n – 1’  degrees of freedom: 
(where n = number of replicates) 

Type B Confidence interval 

To convert a CI to a standard uncertainty, divide by t (0.05, n –1) 

Knowing the sampling distribution of the mean value, one can see if a range assumed to 
include the true value can be defined (excluding any systematic effects). Such a range is 
the confidence interval (CI). This slide shows that this interval depends on the number of 
replicates used to estimate the standard deviation and the level of confidence required. 
The t value in the formula depends both on the level of confidence required and the 
degrees of freedom (n – 1) and can be found in tables for the t distribution. Information 
about the uncertainty of a value may be given as a confidence interval.

A point to note here is that uncertainty and confidence interval should not be confused. 
The confidence interval may not reflect the true variability.

If the data are given as ‘A concentration is given as a confidence interval’, then this 
should be converted to a standard uncertainty using the formula presented in the slide.
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t-distribution (Student's t-distribution) 

This is the probability distribution used when the population is
normally  distributed, but the sample size is small. 

When the sample mean is       and s(xi)  is the  sample 
standard deviation, then the quantity  

    

 

has a t-distribution with n = n − 1 degrees of freedom.   

x

t = x −µ
s(xi)/ n

The probability distribution that arises when the sample size is small and there is a 
problem estimating the mean value of a normally distributed population with mean μ and 
standard deviation σ is called a t-distribution.

Note that there is a different t-distribution for each sample size. When one speaks about 
a specific t-distribution, we have to specify the degrees of freedom. The t-distribution 
curves are symmetric and bell-shaped like the normal distribution. However, the spread is 
different from that of standard normal distribution. t-distribution is the basis of Student’s 
t-tests for the statistical significance.
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Significance testing 

A significance test involves testing the truth of a null hypothesis (e.g. the analytical 
procedure has no bias). The ‘null’ hypothesis implies that there is no difference between 
the measured value and the known value other than that accounted for by random 
variability. 

Statistics can be used to calculate the probability of observing a given value taking into 
account the random variability. The lower the probability that the observed difference 
occurs by chance, the less likely it is that the null hypothesis is true.

Significance testing is an important tool in procedure validation. Most significance 
tests are named after the particular statistic used: t-test uses t statistics, the F-test uses 
F statistics, etc.
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Significance testing — overview 

A decision at a given level of confidence about a population is 
based on observations from a sample of the population. 

    Tests covered: 

• t-test 

— Testing for a significant difference between the (i) means and 
a reference value; (ii) two data sets (difference of means); or 
(iii) difference between pairs of measurement. 

• F-test 

— Testing for a significant difference between the spreads of two 
data sets (difference of s).  

A significant test is used for:

•	 comparison of an experimental mean value with a known value;
•	 comparison of two experimental mean values;
•	 comparison of the standard deviations of two sets of data.

We may wish to test whether procedure A is more precise than procedure B (i.e. one-
sided test) or we may wish to test whether procedure A and procedure B differ in their 
precision (i.e. two-sided test).

A significant difference between the spreads of two data sets (difference of s) can also 
be investigated.
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One/two-sided probabilities 

                   + 1.6s  
 

 Probability that x is less than  +1.6s  

 Probability that x is greater than  +1.6s  

5 % 

 – 2s                  + 2s

2.5 % 

Probability that x is within the range  ± 2s  
 Probability that x is outside the range  ± 2s 

Two-sidedOne-sided  

95 % 95 % 

2.5 % 

The slide gives the background information about one-sided/two-sided probability.

The area under the distribution curve gives the probability of a result being in a particular 
region.

There are two ways of assigning 95.4 % of a distribution.

•	 One-sided (tailed)
A one-sided test is referred to as a one-tailed test of significance (e.g. a limit for the 
specification of a product). It is only of interest whether a certain limit is exceeded 
or not. The critical region for a one-sided test is the set of values less than the 
critical value of the test, or the set of values greater than the critical value of the test.

•	 Two-sided (tailed)
The critical region for a two-sided test is the set of values less than a first critical 
value of the test and the set of values greater than a second critical value of the 
test. A two-sided test is referred to as a two-tailed test of significance.

The choice between a one-sided and a two-sided test is determined by the purpose of the 
investigation or prior reasons for using a one-sided test, for example when analysing a 
reference material (Does a measured value lie within or outside the certified value ± a 
certain range?).
In both cases, at 95.4 % confidence level, there is a probability of approximately 5 % that 
the decision is wrong.
If the alternate hypothesis contains the phrase ‘different from’, the test is two-tailed.
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Significance testing: The eight steps

1. Formulate the question 

2. Select the test 

3. Decide on a one- or two-sided test

4. Choose the level of significance 

5. Define null and alternative hypothesis 

6. Determine the critical value 

7. Evaluation of the test statistic using the appropriate equations 

8. Decisions and conclusions 

 

 

The slide is a summary of significance testing steps. 

The t-test, and any statistical test, consists of the following steps.

•	 Formulate the question
•	 Select the test
•	 Decide on one- or two-sided test 
•	 Choose the level of significance
•	 Define the null and alternative hypotheses
•	 Calculate the t-statistic for the data, tcalc 
•	 Compare tcalc with the tabulated t-value, tcrit for the appropriate significance level 

and degree of freedom.
•	 If tcalc > tcrit, we reject the null hypothesis and accept the alternate hypothesis. 

Otherwise, we accept the null hypothesis.
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Significance testing: Steps 1–4

1. Formulate the question 

2. Select the test 

3. Decide on a one- or two-sided test 

4. Choose the level of significance 
 

     The level of significance is related to a probability: 

     for most purposes, 95 % level of confidence is appropriate, 
corresponding to a of significance level of 0.05; 

     at a 95 % level of confidence, there is a 5 % probability that a 
wrong decision will be made, rejecting the null hypothesis 
when it is true. 

The next few slides go through the significance testing steps.

We have analysed a reference material and we want to know if the bias between the mean 
value of the measurements and the certified value of a reference material is ‘significant’ 
or just due to random variability.

Step 3: If the question is, ‘Is the measured mean value significantly different form the 
certified value?’, the test is two-sided.

Step 4: Is the selection of the level of significance. For most purposes, a 95.4 % level of 
confidence is an appropriate level. At a 95.4 % level of confidence, there is approximately 
a 5 % probability that a wrong decision will be made.

In significance testing, a test will indicate significance more often at a lower level of 
confidence (higher level of significance).
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Significance testing: Step 5  

 
     

5. Define null and alternative hypotheses   

      Null hypothesis H0 

• The term ‘null’  is used to imply that there is no difference 
between the observed and known value, other than that 
which can be attributed to random variation (  = x). 

 Alternative hypothesis H1 

• The opposite of the null hypothesis: there is a difference,

 (    x), where x is a sample mean;  is a true value. 

            

Null hypothesis
The null hypothesis, H0, represents a theory that has been put forward, either because 
it is believed to be true or because it is to be used as a basis for argument, but has not 
been proven. We give special consideration to the null hypothesis. This is due to the fact 
that the null hypothesis relates to the statement being tested, whereas the alternative 
hypothesis relates to the statement to be accepted when the null hypothesis is rejected.

Alternative hypothesis
The alternative hypothesis, H1, is a statement of what a statistical hypothesis test is set 
up to establish.

The final conclusion once the test has been carried out is always given in terms of the 
null hypothesis. We either ‘Reject H0 in favour of H1’ or ‘Accept H0’: we never conclude 
‘Reject H1’, or even ‘Accept H1’.If we conclude ‘Accept H0’, this does not necessarily 
mean that the null hypothesis is true, it only suggests that there is not sufficient evidence 
against H0 in favour of H1. Rejecting the null hypothesis then, suggests that the alternative 
hypothesis may be true.
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Significance testing: Step 5  
Hypotheses and sides 

H0  ‘The mean is equal to the value’  = x0  

H1   ‘The mean is is less than the given value’  < x0  

  one-sided test 

H0 ‘The mean is equal to the value’  = x0 

H1 ‘The mean is greater than the given value’  > x0           
  one-sided test 

H0 ‘The mean is equal to the value’  = x0  

H1 ‘The mean is not equal to the given value’   x0          
  two-sided  test 

Three different cases are presented in this slide.

H0, the null hypothesis, in all cases is: ‘The mean value is equal to the true value’ µ= x0

If the alternate hypothesis contains greater than or less than, the test is one-sided.

If the alternate hypothesis contains different from, the test is two-sided.
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Significance testing: Step 6 

6. Determine the critical value

• The critical value for a hypothesis test is a threshold to which 
the value of the test statistic in a sample is compared to 
determine whether or not the null hypothesis is rejected. 

• the critical value for any hypothesis is set by: 

the level of significance required 

degrees of freedom  

whether the test is one-sided or two-sided 

• Critical values are found in tables (also in Excel)  

 

Significance testing involves comparing a calculated value with a critical value. The 
relevant statistics (t, F, etc.) are calculated for the data set in question and compared with 
the appropriate critical value. Each significant test has its own set of critical data (from 
statistical tables).
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Significance testing: Steps 7,8 

7. Evaluation of the test statistic using the appropriate equations 

8. Decisions and conclusions 

           calculated test statistic < critical value 

no significant difference at selected  confidence level 
(under the given experimental conditions) 

   calculated test statistic > critical value  

there is a  significant difference  at selected  confidence 
level (under the given experimental conditions) 

A significance test shows whether there is sufficient evidence to 
reject the null hypothesis at the selected level of confidence.

 

 

Significance tests show whether there is sufficient evidence to reject the null hypothesis 
at a particular level of confidence. The procedure to determine if the result of the test is 
significant or not is the same for all tests. The calculated test statistic value is compared 
with the appropriate critical value. If the calculated value is greater than the critical value, 
the result of the test indicates a significant difference. This indicates that the observation 
(e.g. the difference between two mean values) is unlikely to have happened by chance, 
and the null hypothesis is rejected. If the calculated value is less than the critical value, 
the result of the test is not significant. The observed difference, in this case, could have 
happened by chance. Each significance test has its own critical values and they can be 
found from statistical tables.
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Critical value 

• Critical values for t-tests and F-tests can be found in statistical  
tables and in Excel 

    Each significant test has a set of critical values! 

• Type of significant test: one and two samples t-test, paired  
t-test or F-test 

• One- or two-sided test 

• Degrees of freedom 

• Level of confidence 

This slide is about critical values, used in significance testing.

Significance testing involves comparison of a calculated value with a critical value. The 
critical value depends on the:

•	 type of significance test
•	 number of tails
•	 degrees of freedom
•	 level of confidence.

The critical value of F depends on the level of significance required and the degrees of 
freedom νA = nA – 1 and νB = nB – 1 and can be found in statistical tables.
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One sample t-test 
 

 

In a comparison of experimental mean with a reference value or a 
nominal value 

 
 
 

           

   

 

 

 

 

   

tcalc = x x0( ) /
s

n

  

s is a sample standard deviation, n sample size, 
       sample mean, x0  stated value x

tcritvalue for = 0.05 and degree of freedom = n – 1

This slide gives the equation used to calculate the t statistic for comparing the mean 
value of a set of observations with a stated value (e.g. legal limit). 

The t-test can be used to compare a sample mean value with an accepted value (a 
population mean), or it can be used to compare the means of two sample sets. s is the 
sample standard deviation or is known from previous measurements, but it could also be 
used for measurements without previously known s.

The term ‘null’ is used to imply that there is no difference between the observed and 
known values other than that which can be attributed to random variation. If the t value 
exceeds a certain critical value, then the null hypothesis is rejected.

The null hypothesis is x = x0

The alternatives are: 

	 x  > x0 one-sided test
	 x  < x0 one-sided test
	 x  ≠ x0 two-sided test

If the alternate hypothesis contains ‘greater than’ or ‘less than’, the test is one-sided. If 
the alternate hypothesis contains ‘different from’, the test is two-sided. 
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Two samples t-test  

s
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tcalc =
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In a comparison of two experimental means, when two samples  
are drawn from a population with not significantly different 
standard deviations 

   where: sp is a pooled standard deviation 
n  is the sample size

and     sample means 
degrees of freedom  = n1 + n2 – 2 

2x

Another way in which the results of a new analytical procedure may be tested is by 
comparing them with those obtained by using a second (reference) procedure. In this 
case, we have two sample mean values, x1  and x2 . One has to decide whether the 
difference between the two sample means is significant, that is to test the null hypothesis. 

Considering the null hypothesis, the two procedures give the same result: H0: x1  = x2.

A pooled estimate of the standard deviation can be calculated from the two individual 
standard deviations s1 and s2. This procedure assumes that the samples are drawn from 
the population where the standard deviations are not significantly different.
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Two samples t-test 

tcalc =
(x1 – x2 )

s1
2

n1

+ s2
2

n2

The degrees of freedom  for the tabulated value tcritical is: 
  

In a comparison of two experimental means, when two samples are  
drawn from a population with different standard deviations 

=

s1
2

n1

+ s2
2

n2

s1
4

n1
2 n1 1( ) +

s2
4

n2
2 n2 1( )

If the population standard deviations are unlikely to be statistically equal, then it is 
no longer appropriate to pool sample standard deviations in order to give one overall 
estimate of standard deviation.

Two-tailed: Are the results of two procedures significantly different?

One-tailed: Is the result from procedure 1 significantly lower/higher than the result from 
procedure 2?
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Paired t-test: Principle 

•  lareves erusaem ot deilppa era sisylana fo serudecorp owT
different samples and results are compared 

• The t-value is calculated according to: 

tcalc = d difference

sdifference n

d difference    where     and  s difference are the mean and standard deviation of di 

                         and di is the differences between paired values 
          
• The critical t-value is taken from the t-table for the selected 
confidence level and n – 1 degrees of freedom 

The t-test for comparing two means is not appropriate in this case because it does not 
separate the variation due to procedures from that due to variation between samples.

This difficulty is overcome by looking at the difference di between each pair of results 
given by the two procedures. In order to test the null hypothesis, we test whether di 
differs significantly from 0 using t statistics.

To test the null hypothesis, the procedure is as follows.

1.	 Calculate the difference (di = yi − xi) between the two observations on each pair, 
making sure you distinguish between positive and negative differences.

2.	 Calculate the mean difference ddifference

3.	 Calculate the standard deviation of the differences, sdifference
4.	 Calculate the t-statistic.

Under the null hypothesis, this statistic follows a t-distribution with (n − 1) degrees of 
freedom, n is a number of pairs of results.

5.	 Compare the value tcalculated with tcritical.
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F-test 

The F-test establishes if there is a significant difference between 
variances .

• The F-test considers the ratio of two sample variancess (i.e. ratio
of  the squares of the standard deviations, s1

2/s2
2). 

• Answer the question: Are the spreads different (i.e. do the two 
sets of data come  from two separate populations)?

This comparison can take two forms.

1. Is the precision of Procedure A higher than the precision of 
Procedure B (a one-sided test)?  

2. Is the precision of Procedure A significantly different from the 
precision of Procedure B (a two-sided test)?  

The significance test described so far is used for comparing means. In many cases, it is 
also important to compare the standard deviations of two sets of data.

An F-test could answer the question: Are the variances different or do the two sets of 
data come from two different population?

As with tests on mean values, this comparison can take two forms:

•	 one may wish to test whether procedure A is more precise than procedure B (a 
one-sided test); or 

•	 one may wish to test whether procedure A and procedure B differ in their 
precision (a two-sided test).

For example, when one wishes to test whether a new analytical procedure is more precise 
than a standard procedure, a one-sided test should be used. When the test is whether two 
standard deviations differ significantly (e.g. before applying a t-test) a two-sided test is 
appropriate.
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F-test 

• The F-value is calculated according to the equation: 

   Fcalc = s1
2/s2

2, where  s1
2 > s2

2 

The ratio is  compared with Fcritical values from tables: 

• Fcritical for  and appropriate 1, 2     (one-sided test)  

• Fcritical for /2 and appropriate 1, 2  (two-sided test)  

• If Fcalculated < Fcritical then the variances s1
2 and s2

2 are not 
significantly different for the given confidence level 

• If Fcalculated > Fcritical then the variances s1
2 and s2

2 are 
significantly different for the given confidence level 

• Fcritical is based on two values of degrees of freedom: 

     1 = nn n1 - 1 and 2 = n2 - 1  

n

n n

n

F-test sequence:

1. One- or two-tailed test? The alternatives are:
s1

2 > s2
2	 one-sided test

s1
2 < s2

2	 one-sided test
s1

2 ≠ s2
2	 two-sided test

2. Formulate the level of confidence and significance.
Level of significance required (probability α = 0.05 for 95.4 % level of confidence)

3. The ratio calculated can be compared with values from tables:

one-tailed critical value Fcritical for α and appropriate νA, νB (one-sided test)
one-tailed critical value Fcritical for α/2 and appropriate νA, νB (two-sided test)

If Fobserved < Fcritical then the variances sA
2 and sB

2 are not significantly different for the 
chosen confidence level.

If the null hypothesis is accepted, then the ratio should be close to 1.

The critical value of F depends on the level of significance required and the degrees of 
freedom νA = nA − 1 and νB = nB – 1 and can be found in statistical tables.
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Reporting of 
measurement results 
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Reporting results 

• Outlier rejection 

• Significant figures 

• Rounding results 

• Reporting with expanded uncertainty 

The remaining part of the presentation deals with outliers and the reporting of 
measurement results.
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Grubbs’ test for outliers 

                    Data 
1 5.01 
2 5.03 
3 5.02 
4 4.95 
5 5.04 
6 4.96 
7 4.97 
8 5.01 
9 4.97 

10 4.96 
11 4.98 
12 4.95 
13 4.96 
14 4.98 
15 4.89 
16 5.16 
17 4.96 
18 4.97 
19 4.98 
20 4.99 
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In statistics, an outlier is an observation that is numerically distant from the rest of the 
data. Statistics derived from data sets that include outliers may be misleading. However, 
results should not be removed without a thorough examination of the data.

This slide is about Grubbs’ test for outliers. Grubbs’ test is used to detect outliers in a 
univariate data set. It is based on the assumption of normality. That is, we should first 
verify that our data can be reasonably approximated by a normal distribution before 
applying the Grubbs’ test. Grubbs’ test detects one outlier at a time. This outlier is from 
the data set and the test is iterated until no outliers are detected. However, multiple 
iterations change the probabilities of detection, and the test should not be used for sample 
sizes of fewer than six. Grubbs’ test is also known as the maximum normed residual test. 
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Grubbs’ test for outliers 

• A result appears to differ unreasonably from the others in 
the set 

• In order to use Grubbs  test for an outlier, that is to test 
H0: all measurements come from the same population, the 
statistic G is calculated 

 

 
where xi is a suspect value and s and       are calculated with the 

suspect value included 
 

•  If Gcalc> Gcritical, the suspect value may be rejected 

•  Rejection only on statistical grounds is questionable!!! 
 
 

Gcalc = xi x / s

x

It should be mentioned that this presentation of Grubbs’ test is a simplified presentation.
The Grubbs’ test statistic is the largest absolute deviation from the sample mean in units 
of the sample standard deviation. The test assumes that the population is normal. It 
applies to a single outlier.

Grubbs’ test is defined for the hypothesis: 

•	 H0: there are no outliers in the data set;
•	 H1: there is at least one outlier in the data set.

The critical values for G are given in tables. The values given are for a two-sided test, 
which is appropriate when is not known in advance at which extreme an outlier may 
occur.
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Rules for the number of significant figures 

• All non-zero digits are significant — 1.234 g has four significant  
figures  

• Zeros  between non-zero digits are significant — 1 002 kg has  
four significant figures  

• Leading zeros to the left of the first non-zero digit are not  
significant — 0.01° C has only one significant figure  

• Trailing zeros that are also to the right of a decimal point in a 
number are significant — 0.0230 mL has three significant  
figures  
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Significant figures 

The number of significant figures in a result is the number of 
figures that are known with some degree of reliability.  

        
 Keep all the figures during calculations 

 
    

General presentation of the measurement result: (201 ± 26) ng g-1 

All measurements are approximations — no measurement result could be without 
uncertainty. In carrying out calculations, the general rule is that the accuracy of a 
calculated result is limited by the least accurate measurement involved in the calculation. 

Examples:	 the number 13.2 has three significant figures 
	 the number 13.20 has four significant figures
	 the number 0.001 has one significant figure
	 the number 1.000 has four significant figures

Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum 
levels for certain contaminants in foodstuffs states: ‘The results shall be expressed in the 
same units and with the same number of significant figures as the maximum level laid 
down in Regulation’.
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Rounding of results 

• ‘It usually suffices to quote uc(y) and U to at most two significant
 digits, although in some cases it may be necessary to retain additional

digits to avoid round-off errors in subsequent calculations’.

                                                                 (GUM [5], para. 7.2.6) 

 

U and x (y = x ± U) shall have the same number of decimal places 

Round the final result when the measurement uncertainty has been 
calculated. 

 

 

     

 

Rules for rounding off numbers
When the answer to a calculation contains too many significant figures, it must be rounded off.
There are 10 digits that can occur in the last decimal place in a calculation. One way of 
rounding off involves underestimating the answer for five of these digits (0, 1, 2, 3 and 4) and 
overestimating the answer for the other five (5, 6, 7, 8 and 9). This approach to rounding off 
is summarised as follows. If the digit is smaller than 5, drop this digit and leave the remaining 
number unchanged. If the digit is 5 or larger, drop this digit and add 1 to the preceding digit.

•	 If the digit to be dropped is greater than 5, the last retained digit is increased by 
one. For example, 18.6 is rounded to 19.

•	 If the digit to be dropped is less than 5, the last remaining digit is left as it is. For 
example, 18.4 is rounded to 18.

•	 If the digit to be dropped is 5, and if any digit following it is not zero, the last 
remaining digit is increased by one. For example, 12.51 is rounded to 13. If the 
digit to be dropped is 5 and is followed only by zeros, the last remaining digit is 
increased by one if it is odd, but left as it is if even. For example, 13.50 is rounded 
to 14, 12.50 is rounded to 12. This rule means that if the digit to be dropped is 5 
followed only by zeros, the result is always rounded to the even digit.

In addition, subtraction, multiplication and division, the result is rounded off to the last common 
digit occurring furthest to the right in all components. Another way to state this rule is: in 
addition and subtraction, the result is rounded off so that it has the same number of decimal 
places as the measurement having the fewest decimal places.
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But what is   
4.2? 

A result may be presented as follows: 

• Standard deviation? 
• Rectangular interval? 
• Triangular interval? 
• Confidence interval without specified numbers of degrees of freedom? 
• Confidence interval with specified numbers of degrees of freedom? 
• Combined uncertainty (uc)? 
• Expanded uncertainty (U)? Is ‘k’ specified?   

wCd = (21.4 ± 4.2) mg kg-1 

Reporting results with uncertainty? 

If wCd = (21.4 ± 4.2) mg kg-1 (k = 2), then 4.2 is the expanded uncertainty.

The value 4.2 might be a standard deviation, rectangular interval, triangular interval or 
confidence interval without specified numbers of degrees of freedom.

If the result is given as a value ± uncertainty, the k factor should be stated and the level 
of confidence this provides.

For a laboratory, the uncertainty determines the significant figures to be used in the 
presentation of measurement result. The European co-operation for Accreditation (EA) 
statement and GUM agree on this [5]. The expanded uncertainty should have no more 
than two significant figures. 
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Final message 

Statistics is a very useful tool used to answer a number of questions. Nevertheless, 
statistics should always be applied with a critical view of the results and whether they 
make scientific sense.
No blind use of statistics!

Summary

•	 Statistical parameters 
•	 Various distributions
•	 Statistics for the evaluation of uncertainty of results according to ISO-GUM [5]
•	 Statistics for procedure performance studies
•	 Significance testing
•	 Presentation of results
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Statistics for analytical chemistry — Part II

In this presentation, statistical concepts that provide the necessary foundations for more 
specialised expertise in any area of chemical analysis are briefly discussed. The selected 
topics (regression and correlation, linear regression, calibration, residuals and residual 
analysis) illustrate the basic assumptions of most analytical methods and are necessary 
components of  our general understanding of the ‘quantitative analysis’. Further 
information is included and mostly deals with the functional aspects on the concepts 
widely used for validation of analytical methods as α and β errors, limit of detection 
and control charts. The simplest form of the analysis of variance (ANOVA) — one-way 
ANOVA is also discussed. 

The aim of this presentation is to familiarise users with the basics of applied statistics 
and to help them to design and conduct their experiments properly and extract as much 
information from the results as they legitimately can.
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Statistics for
analytical chemistry

Part II

Last updated - January 2011

Statistics is a tool providing a means of reaching objective decisions and also a useful 
tool for summarising data.
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Aim

   To familiarise users with applied statistics, help
them to design and conduct their experiments
properly and extract as much information from the
results as they legitimately can.

The aim of this presentation is to familiarise users with applied statistics, and provide 
some help to design and conduct experiments properly and to extract as much information 
from the results as is legitimately possible.
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Summary

• Regression and correlation

•  and  errors

• Limit of detection

• Control charts

• Analysis of variance (ANOVA)

The topics covered by this presentation are shown in the slide. 
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Regression and
correlation
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Regression

• A statistical measure that attempts to determine the strength 
of the relationship between one dependent variable (usually
denoted by Y) and a series of other changing variables X (known
as independent variables).

• A regression equation indicates the nature of the relationship
between two (or more) variables and the extent to which one
can predict some variables by knowing others, or the extent to
which some are associated with others.

• The relationship, typically in the form of a straight line (linear
regression), that best approximates all the individual data points
(regression line).

Simple regression is used to examine the relationship between one dependent and one 
independent variable. After performing an analysis, the regression statistics can be used 
to predict the dependent variable when the independent variable is known.

A regression equation allows us to express the relationship between two (or more) 
variables algebraically and indicates the nature of the relationship between them. In 
particular, it indicates the extent to which one can predict some variables by knowing 
others, or the extent to which some are related to others.

A regression line is a line drawn through the points on a scatter plot to summarise the 
relationship between the variables being studied. 
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Regression analysis

• Regression analysis is a
statistical tool for the
investigation of relationships
between variables.

• Regression analysis is the
process of constructing a
mathematical model or
function that can be used to
predict or determine one
variable by another variable
or other variables.

Regression analysis provides a ‘best-fit’ mathematical equation for the relationship 
between the dependent variable (response) and independent variable(s) (covariates). 
Regression analysis helps us to understand how the typical value of the dependent 
variable changes when any one of the independent variables is varied, while the other 
independent variables are held constant. In regression analysis, it is also of interest to 
characterise the variation of the dependent variable around the regression function, which 
can be described by a probability distribution. Regression analysis refers to techniques 
for the modelling and analysis of numerical data consisting of values of a dependent 
variable and of one or more independent variable.

Example: signal related with the concentration.
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Correlation

• Correlation quantifies the degree to which two
variables are related. The variables are not
designated as dependent or independent.

•  Correlation does not find a best-fit line.

• The correlation coefficient (r) that shows how much
one variable tends to change when the other one
does.

• Regression goes beyond correlation by adding
prediction capabilities.

What is correlation? When two variables vary together, statisticians say that there is 
covariation or correlation. The correlation coefficient, r, quantifies the direction and 
magnitude of correlation. The correlation analysis reports the value of the correlation 
coefficient.
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Linear regression
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Linear regression (1)

• Simple linear regression aims to
find a linear relationship between a
response variable and a possible
predictor variable by the method of
least squares.

• A linear regression equation is
usually written

Y = bx + a + e

Y is the dependent variable

a  is the intercept

b  is the slope or regression
coefficient

x  is the independent variable

r is a correlation coefficient

e is the error term

For the given concentration of x, 
calculating the predicted values 
of y indicates how close the actual
values are to the estimated one.

In statistics, linear regression includes any approach to modelling the relationship 
between a variable y and one or more variables denoted by x, such that the model depends 
linearly on the unknown parameters to be estimated from the data. Such a model is called 
a ‘linear model’.

A regression equation allows us to express the relationship between two (or more) 
variables. It indicates the nature of the relationship between two (or more) variables. In 
particular, it indicates the extent to which you can predict some variables by knowing 
others, or the extent to which some are related to others.
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Linear regression (2)

• Regression parameters for a straight line model (Y = a + bx)
are calculated by the least squares method (minimisation of the
sum of squares of deviations from a straight line).

   Regression assumptions:

• Y is linearly related to x or a transformation of x:

• deviations from the regression line (residuals) follow a normal
distribution.

• deviations from the regression line (residuals) have uniform
variance.

Linear regression is based on a number of assumptions. In particular, one of the 
variables must be ‘fixed’ experimentally and/or precisely measureable. So, the simple 
linear regression methods can be used only when we define some experimental variable 
(temperature, pH, dosage, etc.) and test the response of another variable to it.

The most common form is a linear regression of y on x (i.e. the x values are deemed to be 
known exactly and the only error occurs in the determination of y). The position of the 
line is determined by two factors: the slope and the intercept. For the given concentration 
of x, calculating the predicted values of y indicates how close the actual values are to the 
estimated one.

It should be clear that there are other linear regression models than the least squares 
regression model.
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Least squares (1)

• The least squares method is a technique for fitting a straight line
through a set of points in such a way that the sum of the
squared vertical distances from the observed points to the
fitted line is minimised.

• The best fit in the least-squares sense minimises the sum of
squared residuals, a residual being the difference between an
observed value and the value provided by a model.

The goal of linear regression is to adjust the values of slope and intercept to find the 
line that best predicts y from x. The line of regression of y on x assumes that all errors 
are in y-direction (between the experimental points and the calculated line). Since some 
of these deviations are positive and some negative it is sensible to seek to minimise the 
sum of the squares of the residuals. The goal of regression is to minimise the sum of the 
squares of the vertical distances of the points from the line. This explains the frequent 
use of the term ‘method of least squares for the procedure’. Parameters are estimated to 
give a ‘best fit’ of the data.

Most commonly, the best fit is evaluated by using the least squares method. In a narrow 
sense, the least squares method is a technique for fitting a straight line through a set of 
points in such a way that the sum of the squared vertical distances from the observed 
points to the fitted line is minimised. ‘Least squares’ means that the overall solution 
minimises the sum of the squares of the errors made in solving every single equation.
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Least squares (2)

Least squares can be interpreted as a method of fitting data.

The best fit in the least-squares sense minimises the sum of
squared residuals.

The line of regression Y on x calculated on this principle must
pass through the centroid of all points (x, y)

where x is the mean of the x values, y is the mean of y values.

The most important application is in data fitting. The best fit in the least-squares sense 
minimises the sum of squared residuals, a residual being the difference between an 
observed value and the value provided by a model. The method of least squares, used 
to obtain this best line, minimises the sum of squares of the differences between the 
actual value of y and the predicted value (y residuals): the line obtained is the best line 
that can be fitted to the data. The line of regression of x on y assumes that all the errors 
occur in the x direction and also passes through the centroid of the points. If we maintain 
rigidly the concentration that the analytical signal is always plotted on the y-axis and the 
concentration on the x-axis, it is always the line of regression of y on x that we must use 
in calibration experiments.



192

Analytical measurement: measurement uncertainty and statistics

Slide 13Statistics 2 - 2.2© European Union, 2010

    The correlation coefficient (r) is given as a measure of the
degree of association between two variables (a change in
x produces a predictable change in Y):

r  is the proportion of the total variance (s ) of Y that can be
explained by the linear regression of Y on x.

Correlation coefficient (1)

   

r =
xi x( ) yi y( )
xi x( )2

yi y( )2

n
i=1
n
i=1

n
i=1

Covariance of two variables x and y is:

x x y y ni i−( ) −( ){ }∑ /
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Correlation coefficient

y = 40.143x + 7.4286
R 2 = 0.9984
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Although correlation coefficients are easy to calculate, they are often misinterpreted. 
The calibration curve must always be plotted — otherwise a straight line relationship 
might wrongly be deduced from the calculation of r.

With linear regression, it is conventional to use the abbreviation r2. With non-linear 
regression, the convention is to use R2. 
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Correlation coefficient (2)
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The calibration curve must always be
plotted — a straight line relationship
might wrongly be deduced from the
calculation of r.

r = 1

r = – 1

r = 0

It can be shown that r can take values in the range − 1 ≤ r ≤ 1.

An r value of – 1 describes perfect negative correlation (i.e. all the experimental points 
lie on a straight line of negative slope).

When r = + 1, there is perfect positive correlation (i.e. all the points lying exactly on a 
straight line with a positive slope).

When there is no linear correlation between x and y, the value r is close to zero.

Experience shows that even quite poor looking calibration plots give high r values. In 
such a case, the numerator and denominator in the r equation are nearly equal. It is very 
important to do the calculation with an adequate number of significant figures. Zero 
correlation coefficient does not mean that x and y are entirely unrelated — it only means 
that they are not linearly related. 
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Slope and intercept

a = y bx

The slope of the least squares line is:

The intercept of the least squares line is:

The regression determined by a and b is known as the line
of regression of y on x. The line of regression of x on y is not the 
same line (except when R = 1 exactly).

The slope equals the change in y for each unit change in x. It is expressed in the units 
of the y-axis divided by the units of the x-axis. If the slope is positive, y increases as x 
increases. If the slope is negative, y decreases as x increases.

It is important to emphasise that equations given in this slide must not be misused — 
they will only give useful results when prior study (calculation of r and visual inspection 
of the points) has indicated that a straight line relationship is realistic for the experiment 
in question.
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                 Residuals

    The residual represents unexplained (or residual) variation after fitting
a regression model. It is the difference (or leftover) between the
observed value of the variable and the value suggested by the

The sum of squares of residuals =

regression model.
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A regression line is a line drawn through the points on a scatter plot to summarise the 
relationship between the variables being studied. For a given value of x, say x1, there will 
be a difference between the value y1 and the corresponding value as determined by the 
‘best fitting’ curve. This distance, D1, is referred to as a residual.

When the regression line slopes down (from top left to bottom right), this indicates a 
negative or inverse relationship between the variables; when it slopes up (from bottom 
right to top left), a positive or direct relationship is indicated.

A residual is the difference from the actual y value and the value obtained by plugging the 
x value (that goes with the y value) into the regression equation. Using these residuals, 
the following definition has been developed: of all curves approximating a given set of 
data points, the curve having the property that (D1 + D2 + D3 + … + Dn) is a minimum is 
called ‘the best-fitting curve’. A curve having this property is said to fit the data in the 
least-squares sense and is called ‘a least-squares curve’.
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Residual analysis

It is the sum of squares of residuals that is minimised to find the
least squares line.

The assumption of constant standard deviation of the y value
(an uniform dispersion of data points about the regression line) —
homoscedasticity model.

If the standard deviation of the y values are not constant —
heteroscedasticity model.

Each difference between the actual y values and the predicted y values is the error of the 
regression line at a given point and is referred to as a residual. One of the major uses of 
residual analysis is to test some of the assumptions underlying regression. The following 
are the assumptions made in simple regression analysis.

1.	 The model is linear.
2.	 The variables have constant variances. 
3.	 The variables are independent.
4.	 The variables are normally distributed.
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Residual plot

A residual plot is a graph that shows the residuals on the vertical axis and the independent 
variable on the horizontal axis. A residual is positive when the point is above the curve, 
and is negative when the point is below the curve. If the points in a residual plot are 
randomly dispersed around the horizontal axis, a linear regression model is appropriate 
for the data, otherwise, a non-linear model is more appropriate. The plot in the slide 
shows a random pattern, indicating a good fit for a linear model. Mild deviations of data 
from a model are often easier to spot on a residual plot.
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Residual, slope and intercept
standard deviations

For a y on x regression, the following definitions apply:  

sy/x =

2

yi yi( )
i

n 2–

Residual standard deviation:

y
i

y
i are residuals

Standard deviation of slope:

Standard deviation of intercept:

sb =
sy/x

2

xi x( )
i

sa = sy/x

2
xi

i
2

xi x( )
i

n – 2         degrees of freedom

The calculated regression line will, in practice, be used to estimate the measurand in test 
materials by interpolation. The random errors in the values for the slope and intercept 
are thus of importance. First, we must calculate sy/x which estimates the random error in 
the y direction.

The ŷi values for a given value of x is calculated from the regression equation. The 
formula for the residual standard deviation is very similar to the equation for the sd of a 
set of repeated measurements, with (n − 2) is degrees of freedom.

With sy/x we can now calculate sa and sb and then estimate the confidence limits for the 
slope and intercept.
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Confidence intervals for the slope,
intercept and regression line

• Using the residual standard deviation, we can obtain
estimates of the standard deviations of the slope (sb),
intercept (sa) and the regression line (sy/x).

• The confidence interval for these are:

a ± t  sb b ±  t  sa

y ± t  sy/x

t — 95 % confidence level, two-tailed test with n – 2 degrees of freedom
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Confidence intervals

• Two confidence bands surrounding the best-fit line define the
confidence interval of the best-fit line.

The confidence limits for x range by using
unweighted regression line

The width of the confidence interval gives us some idea about how uncertain we are 
about the unknown parameter. A very wide interval may indicate that more data should 
be collected before anything more definite can be said about the parameter.
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Homoscedasticity

Homoscedasticity refers to the fact that the variance  of the response (or
‘dependent’) variable y is constant across the range of the predictor(s) x.

The property of having equal
statistical variances

Homoscedasticity requires that the standard deviation and variance of the error terms 
are constant for all x, and that the error terms are drawn from the same population. This 
indicates that there is a uniform scatter or dispersion of data points about the regression 
line.

The assumption of homoscedasticity is that the residuals are approximately equal for all 
predicted values. Data are homoscedastic if the residuals plot is the same width for all 
values.

In regression analysis, homoscedasticity means a situation in which the variance of the 
dependent variable is the same for all the data.

Homoscedasticity facilitates analysis because most methods are based on the assumption 
of equal variance. In this case, the y direction errors in the calibration curve to be 
approximately equal for all the points and unweighted regression calculation is legitimate.
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Heteroscedastisity

Weighted least squares as a solution to
heteroscedastisity

As previously noted, in many cases, the data are heteroscedastic (i.e. standard deviation 
of the y values increases/changes with the concentration of the analyte, rather than having 
the same value at all concentrations). In such a case, weighted regression calculations 
should be used instead. 
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Ways to detect heteroscedasticity

• Scatter plot of X against Y (prior to analysis)

• Scatter plot of predictions against residuals, either

 Scatter plot of X against relative value of residuals

 Scatter plot of X against the absolute value

of the residuals

 Scatter plot of X against the squared residuals

 F-test
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Correlation/linear regression

Correlation
• Quantifies the degree to which two variables are related but

doesn't aim to find a linear relationship

• It doesn't matter which of the two variables we call ‘X ’ or ‘Y ’

• Almost always used when both variables are measured

Linear regression
• The line that best predicts Y from X is not the same as the line 

that predicts X from Y

• The X variable is often something we experimentally manipulate
(time, concentration, etc.) and the Y variable is something we
measure
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Calibration

• Calibration function

      Functional relationship between the expected value of the
response variable and the value of the net state variable, X

      The calibration function is conceptual and cannot be
determined empirically. It is estimated through calibration.

• Calibration

      Complete set of operations which estimates under specified
conditions the calibration function from observations of the
response variable, Y, obtained on reference states
(see also VM3 [1]: Entry 2.39)

Calibration is a functional relationship between the expected value of the response 
variable and the value of the net state variable, x.
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Experimental data
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A calibration curve is a plot of how the instrumental response, the so-called analytical 
signal, changes with the concentration (6) of the analyte (measurand). An analyst prepares 
a series of measurement standards across a range of concentrations near the expected 
concentration of analyte in the unknown sample. Concentrations of the standards must 
lie within the working range of the technique (instrumentation) they are using. Analysing 
each of these standards using the chosen technique will produce a series of measurements. 
For most analyses a plot of instrument response v analyte concentration will show a 
linear relationship. The operator can then measure the response of the unknown sample 
and, using the calibration curve, can interpolate to find the concentration of analyte.

Most analytical techniques use a calibration curve. There are a number of advantages 
to this approach, such as that a calibration curve provides a reliable way to calculate 
the uncertainty of the concentration calculated from the calibration curve (using the 
statistics of the least squares line fit to the data).

(6)  Measurand can also be expressed in terms other than ‘concentration’ (eg. mass fraction).
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Type I ( ) and Type
II ( ) errors
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 and  errors

• Type I error, also known as an  error or a
‘false positive’: the error of rejecting a null hypothesis
when it is actually true.

• Type II error, also known as a  error, or a
‘false negative’: the error of failing to reject
a null hypothesis when it is in fact not true.

• The probability of committing a Type I error is an 
error or level of significance.

• The probability of committing a Type II error is a
 error.

Because the hypothesis testing process uses sample statistics calculated from random 
data to reach conclusions about population parameters, it is possible to make an incorrect 
decision about the null hypothesis. In particular, two types of errors can be made in 
testing hypotheses: Type I errors and Type II errors.

•	 A Type I error (α) is committed by rejecting a true null hypothesis. With a Type I 
error, the null hypothesis is true, but the researcher decides that it is not.  

•	 A Type II error  (β) is committed when  failing to reject a false null hypothesis. 
In this case, the null hypothesis is false, but a decision is made not to reject it. 

Actually, because β occurs only when the null hypothesis is not true, the computation of 
β varies with the many possible alternative parameters that might occur. Unlike α, β is 
not usually stated at the beginning of the hypothesis testing procedure.
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False positives and false negatives (1)

False Positive, or Type I (α) error, means concluding
that a substance is present when it is not.

False Negative, or Type II (β) error, means concluding
that a substance is not present when it is.

Type II error

( )
Type I error

( )

Correct Decision

(power)

Null false Null true

Fail to reject null

Reject null

Correct Decision

Let us imagine using a given analytical procedure in the concentration domain, knowing 
its precision along the different concentration levels and the results having a normal 
distribution. If we analyse many blank samples, we would obtain a distribution of values 
resembling that of a normal distribution.

The concentration values (in absence of bias in the procedure) would be distributed around 
zero with a given standard deviation, σ0. This means that, as a result of the measurement 
of several blank samples, we could obtain a non-zero concentration, associated with σ0. 
Being responsible for the results provided by the laboratory, we would like to limit the 
distribution at some point. This point is the critical level, LC, and allows us, once the 
sample has been measured, to make a decision whether the analyte is present or not. If the 
concentration obtained is higher than LC, then it probably does not correspond to a blank 
and we could state that the analyte is present in the sample. We, however, are running a 
risk when limiting the distribution at LC. There is a certain probability that the analysis of a 
blank sample would give as a result a concentration value higher than LC. In this case, we 
would falsely conclude that the component is present. This probability, α, is a Type I error, 
or, more commonly, the probability of committing a false positive.

Choosing the value of α is our decision, depending on the risk of being wrong we are willing to 
accept. We could, for example, fix LC at a concentration level of zero. The risk of committing 
a false positive in this case would be of 50 % (any concentration value above zero found in 
a sample would be taken as a positive detection). Defining LC in such a way that the risk is 
limited to, for instance, 5 % (α = 0.05) seems a more appropriate decision in most situations.
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False positives and false negatives (2)

Experiment Analyte not present        Analyte present

Not detected Decisions

(x < xc) True positive False negative

(P = 1 – ) (P = )

Detected

(x > xc) False positive True positive

(P = () P = 1 – )

How are α and β related? First of all, because α can only be committed when the null 
hypothesis is rejected and β can only be committed when the null hypothesis is not 
rejected, a researcher cannot commit both a Type I error and a Type II error at the same 
time on the same hypothesis test. Generally, α and β are inversely related. If α is reduced, 
then β is increased, and vice versa. 

Recall that:

x — concentration of the analyte
xc — concentration of the analyte at the limit of detection
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Limit of detection
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Limit of detection (1)

• The signal at the limit of detection or the quantity, XL, is derived
from the smallest measure, that can be detected with
reasonable certainty for a given analytical procedure. The
value of XL is given by the equation:

 XL = xbl + ksbl

   where: 
xbl is the mean of blank measures,  
sbl is the standard deviation of the blank measures, and 
k is a numerical factor chosen according to the confidence level 
desired.

(IUPAC Recommendations, 1995) [19]

There is always some uncertainty associated with any instrumental measurement. This 
also applies to the baseline (or background or blank) measurement (i.e. the signal obtained 
when no analyte is present). Various criteria have been applied to this determination; 
however, the generally accepted rule in analytical chemistry is that the signal must be at 
least three times greater than the background noise.

Formally, the limit of detection (LOD) is defined as the concentration of analyte required 
to give a signal equal to blank plus three times the standard deviation of the blank. 
So, before any calibration or sample measurement is performed, we need to evaluate 
the blank. This gives the minimum signal that can be interpreted as a meaningful 
measurement. To find the associated concentration, the calibration curve should be used 
to convert the signal to a concentration.

Where no blank has been measured, we can use the calibration data and regression 
statistics instead.

The LOD represents the level below which we cannot be confident whether or not 
the analyte is actually present. It follows from this that no analytical method can ever 
conclusively prove that a particular chemical substance is not present in a sample, only 
that it cannot be detected. In other words, there is no such thing as zero concentration!
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Limit of detection (2)

The Limit of Detection (LOD) is the smallest quantity of analyte,
of which it can be said, with a given level of confidence, is
present in the sample.

Frequency

Response, Y      Y0        YC        YD

Y0  is the response variable corresponding to blank
YC  is the critical value of the response variable
YD is the response variable corresponding to LOD

This graph is in the signal domain. The limit of detection (LOD) is the smallest quantity 
of analyte, of which it can be said, with a given level of confidence, that it is present in the 
sample. As shown in the figure in the slide, the LOD depends on the variation of the method 
at the blank level, s0, and on two risk values a and b (a corresponds to the risk of detecting 
the analyte although it is not present).

The limit identified as the critical value is usually obtained by multiplying the standard 
deviation of observation from a blank variable, s0, by one-tailed Student’s t value for 
infinite degrees of freedom and the appropriate value of a and adding this to the mean 
blank response if the blank response is significantly different from a false positive rate 
5 % (a = 0.05 is typically used). This gives a critical value of 1.65 s0 if the response 
variable corresponding to the blank is zero.

The critical value YC is determined by three parameters: the blank value, a value, and the 
s0. With YC fixed, the LOD depends solely on b, the value of the risk of not detecting the 
analyte although it is present.

Typically, b is set equal to a, that is 0.05 % to represent a 5 % false negative rate and t is 
taken for the greatest degrees of freedom, that is t = 1.65.

The limit of detection is then approximately: LOD = YC + (1 × s0 × 1.65) + (1 × s0. × 
1.65) = YC + 3.3s0.
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Graphical representation of LOD

Lc LODyo

o

yo is the mean of the blank measures
Lc is the decision level
LOD is the limit of detection

3  0

The limit of detection,
expressed as the concentration 

On this slide, the minimum single reply, with a stated probability which can be 
distinguished from a suitable blank value, is given. The limit of detection defines the 
point at which the analysis becomes possible and this may be different from the lower 
limit of the determinable analytical range.

By default, a and b are set to 5 %. If the distribution of the values is presumed to be 
Gaussian, and if the dispersion is presumed to be constant in the blank-LOD range, then 
LOD values are given by LOD = y0 + 3s0.
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Control charts

• Control charts are used to track regular measurements of an
ongoing process, and to signal when such a process has
reached the point of going ‘out of control’ (i.e. may no longer be
governed by the same properties, such as mean or standard
deviation).

• The control chart has upper and lower control limits for sample
statistics provided by successive samples taken over time.

• If control value meets certain criteria for being ‘extreme’ (e.g.
too far away from the mean), this is a signal to investigate the
process and determine whether anything is wrong.

The control chart is a graph used to study how a measurement process changes over time. 
Data are plotted in time order. A control chart always has a central line for the average, 
an upper line for the upper control limit and a lower line for the lower control limit. 
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Chart details

A control chart consists of:

• points representing a statistic (e.g. a mean, range, proportion)
of measurements of a quality characteristic in samples taken
from the process at different times;

• the mean of this statistic using all the samples is calculated;

• a centre line is drawn at the value of the mean of the statistic;

• the standard deviation (e.g. standard deviation/sqrt(n) for the
mean) of the statistic is also calculated using all the samples;

• upper and lower control limits that indicate the threshold at
which the process output is considered statistically ‘unlikely’
are drawn typically at 3  from the centre line.

This slide explains how statistics is used to build a control chart.
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Examples

 R-Chart: N NH4
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g
/l

X-Chart: Zn

50

55

60

65

70

1-Feb 22-Mar 10-May 28-Jun 16-Aug 4-Oct 22-Nov 10-Jan 28-Feb

Date of analysis

g
/l

For more details, see Internal Quality presentation

This slide shows two examples of control charts: X-chart and R-chart.

•	 X-chart: in this chart, the sample means are plotted in order to control the mean 
value of a variable

•	 R-chart: in this chart, the sample ranges are plotted in order to control the 
variability of a variable. 
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Analysis of variance

(ANOVA)
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Why use ANOVA

• ANOVA separates different sources of variation

•  Variation within batch

•  Variation between batches

• Within-batch and between batches estimates of variance can
be compared

• ANOVA can be applied to any data, that can be grouped by a
particular factor(s)

• ANOVA is used to compare sets of data

ANOVA (analysis of variance) is a powerful statistical technique which can be used 
to separate and estimate different causes of variation and to compare sets of data. 
Furthermore, the different sources of variation can be compared to determine if they are 
significantly different, under the assumption that the sampled populations are normally 
distributed.

There is ‘a between-group variation’ and ‘a within-group variation’. The idea behind the 
analysis of variance is to compare the ratio of ‘between-group variance’ to ‘within-group 
variance’.

ANOVA applies a statistical F-test to test the statistical significance of the differences 
among the obtained means of two or more random samples from a given population. It 
is assumed that the variances of the individual groups are similar (i.e. not statistically 
significantly different).
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Between and within-group variations

64
65
66
67
68
69
70
71
72

0 2 4 6 8 10 12 14 16

The variance is the mean of the squared
 deviations about the mean (MS) or the
 sum of the squared deviations about the
 mean (SS) divided by the degrees of
 freedom (df)

1

)( 2

2 ====
N

N xx
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The null hypothesis is: there is no difference in the population means of the different 
levels of factor A.

The alternative hypothesis is: the means are statistically not the same.

Student’s t-test can be used to compare the means of two sets of data. The t-test tells us 
if the variation between two groups is ‘significant’.

ANOVA allows the comparison of multiple data sets. Multiple t-tests are not the answer 
because as the number of groups grows, the number of needed pair comparisons grows 
quickly. Also, doing multiple two-sample t-tests would result in a greatly increased 
chance of committing a Type I error.

Therefore, ANOVA has an advantage over a two-sample t-test.

Example: For seven groups, there are 21 pairs. If we test 21 pairs, we should not be 
surprised to observe things that happen only 5 % of the time. Thus, in 21 pairings, a  
P = 0.05 for one pair cannot be considered significant. ANOVA puts all the data into one 
number (F) and gives us one P for the null hypothesis. 
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One-way ANOVA

• This is simplest type of analysis of variance used when there
are equal numbers of observations (e.g. replicates, samples)

• When data can be grouped by a single factor

• Consider p different levels of a single factor (laboratory,
sample, days) and suppose that n observations have been
made at each level giving N total results (N = pn).

• The aim of the experiment is to determine if there are
differences between the p levels
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One-way ANOVA

• The hypotheses are as follows:

H0: M1 = M0 there is no difference between the p levels

H1: M1 > M0 there is difference between the p levels

• To determine whether there is a significant difference among
the means, the mean squares are compared using an F-test.

• Fcritical is obtained from tables of one-tailed F values at the
appropriate level of significance ( ) and (p – 1) and p(n – 1)
degrees of freedom.

Recall that:

n is the number of observations at each level
p is the number of levels 
N = pn is the total number of observations
M is mean square values
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ANOVA results table

Source of
Variation

Sum of squares df Mean square F P-value Fcritical

Between-
group

S1 = (i) − (iii) p – 1 M1 = S1/(p – 1) M1/Mo

Within-
group

S0 = (ii) − (i) N – p Mo = So/(N – p)

Total S1 + S0 = (ii) − (iii) N – 1

df is degrees of freedom
p is the number of groups of data (levels)
N is the total number of observations
P-value is the probability
Fcritical is the critical value for F 

ANOVA calculations are usually done using software. A results table is shown in the 
slide and the next slide shows a results table in Excel.

The table shows that the variation in the data is divided into within-group and between-
group components.

The mean square terms are variances which are calculated by dividing the sum of square 
terms by their associated degrees of freedom. The degrees of freedom for between groups 
is (p − 1), whereas the total number of degrees of freedom is (N − 1). The degrees of 
freedom for the within-group term is (N − p). If each group contains n values the number 
of data points is N=pn. The degrees of freedom (df) for the within-group terms can be 
written as p(n − 1) and the number of data points is N = pn.
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One-way ANOVA

(ii) = xik
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The mean square values provide the components of variance
attributable to the different level.

For the one-way analysis of variance these are:

The mean square values M0 and M1 provide the components of variance attributable to 
the different levels.
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ANOVA results

• A one-tailed F-test compares mean square values
H0: M1 = M0

H1: M1 > M0

The null hypothesis will apply if there is no variation, other than
random.

• If F > Fcritical null hypothesis (H0) is rejected.

    The between-group variance is significantly greater than the within-
group variance and there are significant differences between the
means of the data set.

• If the P-value is less than the significance level for the test

   (usually  = 0.05), then the null hypothesis is rejected.

In addition to F-tests, ANOVA can be also interrelated using P-values (probability).
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64
65
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0 2 4 6 8 10 12 14 16

Replicates 1 2 3 4 5 6
Vials 1 66 68 67 69 70 69

2 66 67 68 68 68 69
3 71 67 68 69 68 70
4 66 68 67 68 68 69
5 67 67 66 69 69 68
6 65 67 67 69 68 69
7 67 68 68 68 69 69
8 67 66 66 68 68 69
9 67 67 66 69 68 69

10 66 65 67 68 69 68
11 67 67 69 68 68 70
12 67 68 69 69 68 69
13 67 67 68 69 68 68
14 67 68 68 69 68 69
15 65 66 65 68 68 67

SUMMARY
Groups Count Sum AverageVariance

1 6 409 68.2 2.2
2 6 406 67.7 1.1
3 6 413 68.8 2.2
4 6 406 67.7 1.1
5 6 406 67.7 1.5
6 6 405 67.5 2.3
7 6 409 68.2 0.6
8 6 404 67.3 1.5
9 6 406 67.7 1.5
10 6 403 67.2 2.2
11 6 409 68.2 1.4
12 6 410 68.3 0.7
13 6 407 67.8 0.6
14 6 409 68.2 0.6
15 6 399 66.5 1.9

ANOVA
Source of Variation SS df MS F P-value Fcritical

Between-group
Within-group

Total 131.0 89

Repeatability stdev sr 1.18 =sqrt(MSW)

Between-group stdev sL 1.21 =sqrt((MSB-MSW)/N)
(N replicates)

One-way ANOVA in Excel

Mean
Squares

MS

Sum of
Squares

SS

26.2 14 1.87 1.34 0.207 1.83
104.8 75 1.40

The simplest ANOVA method is one-way ANOVA, when there is one factor (e.g. 
analyst, temperature) either controlled or random, in addition to the random error in 
measurement.

ANOVA allows the sources of variation to be separated. By applying ANOVA, we can 
obtain sr and sR, repeatability and reproducibility standard deviations, respectively, used 
in interlaboratory comparison and homogeneity studies. 
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Batch S1A1 S1A2 S2A1 S2A2
B1 402 325 361 351
B2 382 319 349 362
B3 332 291 397 348
B4 280 278 358 321
B5 370 409 378 460
B6 344 318 381 392
B7 297 333 341 315
B8 336 320 292 306
B9 372 353 332 337
B10 407 361 322 382

S1 and S2: Primary samples from sampling location 1 and 2 of one production batch
A1 and A2: Analyses of duplicate test samples of a primary sample S
Analysed mean value (test sample 40 g): 348 μg g-1

(Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide, Measurement uncertainty arising from sampling: a guide to methods 
and approaches (2007) [16].)

Example — Sampling 

This slides shows the application of ANOVA for sampling. More details are available 
in the Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide [16]. 
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Example — Sampling

SUMMARY

Groups Count Sum Average Variance

4.68712.2532253011 nmuloC

332.27317.0337033012 nmuloC

4445.4691.1531153013 nmuloC

873.37024.7534753014 nmuloC

ANOVA

Source of variation SS df MS F P-value Fcritical

Between-group 4148.1 3 1382.7 0.89256 0.454338 2.866266

Within-groups 55769 36 1549.139

Total 59917.1 39

The one-way output from Excel in this example shows that between-sample mean square 
is smaller than within-sample mean square and the result of the F-test shows that this 
difference is not significant.
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Final message

Statistics is a very useful tool in helping to answer a number of questions. Nevertheless, 
statistics should always be applied with a critical view of the results, whether they make 
scientific sense. 
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Summary
TrainMiC® is a European programme for lifelong learning on how to interpret the 
metrological requirements in chemistry. It is operational across many parts of Europe via 
national teams. These teams use shareware pedagogic tools which have been harmonised 
at European level through the joint effort of many experts across Europe working as an 
editorial board. The material has been translated into 14 different languages. 

This report includes four TrainMiC® presentations:

1. Uncertainty of measurement — Part I Principles;
2. Uncertainty of measurement — Part II Approaches to evaluation; 
3. Statistics for analytical chemistry — Part I; and 
4. Statistics for analytical chemistry — Part II.
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