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A practical guide to analytical
method validation, including
measurement uncertainty and
accuracy profiles
A. Gustavo González, M. Ángeles Herrador
The objective of analytical method validation is to ensure that every future

measurement in routine analysis will be close enough to the unknown true

value for the content of the analyte in the sample. Classical approaches to

validation only check performance against reference values, but this does not

reflect the needs of consumers. A holistic approach to validation also takes

into account the expected proportion of acceptable results lying inside

predefined acceptability intervals.

In this article, we give a detailed step-by-step guide to analytical method

validation, considering the most relevant procedures for checking the quality

parameters of analytical methods. Using a holistic approach, we also explain

the estimation of measurement uncertainty and accuracy profiles, which we

discuss in terms of accreditation requirements and predefined acceptability

limits.
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1. Introduction

The final goal of the validation of an
analytical method is to ensure that every
future measurement in routine analysis
will be close enough to the unknown true
value for the content of the analyte in the
sample. [1]. Accordingly, the objectives of
validation are not simply to obtain esti-
mates of trueness or bias and precision but
Elsevier Ltd. All rights reserved. doi:10.1016/j.trac.2007.01.009Elsevier Ltd. All rights reserved. doi:10.1016/j.trac.2007.01.009
also to evaluate those risks that can be
expressed by the measurement uncer-
tainty associated with the result [2].
Accuracy, according to the ISO 5725
definition [3], comprises two components
– trueness and precision – but, instead of
assessing these independently, it is possible
to assess accuracy in a global way
according to the concept of acceptability
limits and accuracy profiles [4–8]. Accu-
racy profiles and measurement uncer-
tainty are related topics, so either can be
evaluated using the other. In a holistic
sense, as Feinberg and Laurentie pointed
out [9], method validation, together with
uncertainty measurement or accuracy-
profile estimation, can provide a way to
check whether an analytical method is
correctly fit for the purpose of meeting
legal requirements. Fitness for purpose is
the extent to which the performance of a
method matches the criteria that have
been agreed between the analyst and the
end-user of the data or the consumer and
that describe their needs [10]. Classical
approaches to validation consisted of
checking the conformity of a performance
measure to a reference value, but this does
not reflect the consumer�s needs, men-
tioned above. By contrast, the holistic ap-
proach to validation establishes the
expected proportion of acceptable results
lying between predefined acceptability
limits. Many excellent papers and guides
have been written about the validation of
analytical methods but no attention has
been paid to the holistic paradigm. We aim
to provide to the analyst with a practical
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guide to performing the validation of analytical methods
using this holistic approach.
2. Practical approach to global method validation

For the sake of clarity, we have divided the content of the
guide into four sections that we will outline and explain,
as follows and as shown in Fig. 1:
(1) applicability, fitness for purpose and acceptability

limits;
(2) specificity and selectivity;
(3) calibration study, involving the goodness of the fit

of the calibration function and dynamic concentra-
tion range, sensitivity and detection and determina-
tion limits, as well as assessment for matrix effects;
and,

(4) accuracy study, involving trueness, precision and
robustness as well as the estimation of measurement
uncertainty and accuracy profiles

2.1. Applicability, fitness for purpose and acceptability
limits
The method applicability is a set of features that cover,
apart from the performance specifications, information
about the identity of analyte (e.g., nature and specia-
tion), concentration range covered, kind of matrix of the
material considered for validation, the corresponding
protocol (describing equipment, reagents, analytical
procedure, including calibration, as well as quality pro-
cedures and safety precautions) and the intended appli-
cation with its critical requirements [10]. The method
Applicability, fitness for purpose and 
acceptability limits 
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Figure 1. Scheme for the holistic approach to validation.
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applicability must be consistent with the ‘‘golden rules’’
for method validation proposed by Massart et al. [11],
namely:
(1) the analytical procedure has to be validated as a

whole, including sample treatments prior to analy-
sis;

(2) the analytical procedure has to be validated cover-
ing the full range of analyte concentrations specified
in the method scope; and,

(3) the analytical procedure has to be validated for each
kind of matrix where it will be applied.

Fitness for purpose [10,12,13] is the extent to which
the method performance matches the agreed criteria or
requirements. A laboratory must be capable of providing
results of the required quality. The agreed requirements
of an analytical method and the required quality of the
analytical result (i.e. its accuracy) refer to the fitness for
purpose of the analytical method. The accuracy can be
assessed in a global way, as indicated above, by using the
concept of acceptability limit k [6–8]. Thus, analytical
result Z may differ from unknown ‘‘true value’’ T to an
extent less than the acceptability limit:

jZ� Tj < k ð1Þ
Limit k depends on the goals of the analytical proce-

dure: 1% for bulk materials; 5% for determination of
active ingredients in dosage forms; and, 15% in bio/
environmental analysis [8]. A procedure can be vali-
dated if it is very likely that the requirement given by (1)
is fulfilled, i.e.:

PðjZ� lj < kÞP b ð2Þ
b being the probability that a future determination

falls inside the acceptability limits. It is possible to com-
pute the so-called ‘‘b-expectation tolerance interval’’
(bETI) (i.e. the interval of future results that meet
Equation (2)) by using the accuracy profiles that we will
describe later (in Section 2.4., devoted to accuracy study
and measurement uncertainty). The use of acceptability
limits together with accuracy profiles is an excellent way
to check the fitness for purpose of the validated method.

2.2. Specificity and selectivity
Selectivity is the degree to which a method can quantify
the analyte accurately in the presence of interferences
under the stated conditions of the assay for the sample
matrix being studied. As it is impracticable to consider
every potential interference, it is advisable to study only
the worst cases that are likely [10]. The absolute absence
of interference effects can be taken as ‘‘specificity’’, so
specificity = 100% selectivity [13]. The selectivity of a
method can be quantitatively expressed by using the
maximum tolerated ratio (TRmax) [14] (i.e. the concen-
tration ratio of interference (Cint) to analyte (Ca) leading
to a disturbance (systematic error) on the analytical re-
sponse that yields a biased estimated analyte concen-
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tration, bCa, falling outside the confidence interval de-
rived from the expanded uncertainty U at a given
probability confidence level):

TRmax ¼
Cint

CabCa 62 ½Ca � U;Ca þ U�
ð3Þ

In this way, selectivity is supported by uncertainty,
and, at least, a crude estimation of the uncertainty is
needed for the nominal concentration of analyte (Ca)
used in the selectivity study.

The selectivity, when applying separative analytical
methods (e.g., chromatography or capillary electropho-
resis), is envisaged as the ability of the method to mea-
sure accurately the analyte in presence of all the
potential sample components (e.g., placebo formulation,
synthesis intermediates, excipients, degradation prod-
ucts, and process impurities) [15], leading to pure,
symmetric peaks with suitable resolution [16]. For
example, in chromatographic methods, the analyte peak
in the mixture should be symmetric with a baseline
resolution of at least 1.5 from the nearest eluting peaks.

Non-separative analytical methods (e.g., spectropho-
tometric methods) are susceptible to selectivity problems
(with the exception of highly selective fluorescence-based
techniques), but, in some cases, first- and second-deriv-
ative techniques may overcome these handicaps [17]. In
electroanalytical methods, selective electrodes or
amperometric sensors are practical examples of specific
devices. For voltammetric methods, pulsed differential
votammetry and square-wave techniques are suitable to
enhance selectivity [18].

However, sometimes the sensitivity (slope of the cali-
bration function) of the analyte is affected by the sample
matrix, leading to another kind of interference for which
the matrix acts as a whole. These effects may be cir-
cumvented by using in situ calibration following the
method of standard additions and we will consider them
in Sections 2.3 and 2.4., on calibration study and the
accuracy study, respectively, because matrix effects may
lead to systematic additive and proportional errors.

2.3. Calibration study
The response function or calibration curve of an ana-
lytical method is, within the range, a monotonic rela-
tionship between the analytical signal (response) and the
concentration of analyte [4]. Response function can be
linear, but non-linear models, such as in enzyme-linked
immunosorbent assay (ELISA) or inductively coupled
plasma (ICP) techniques are also observed.

The response function is obtained using calibration
standards (CSs) prepared in absence of matrix sample
and relating the response and the concentration.
According to the harmonized procedure published by the
Societé Française des Sciences et Techniques Pharma-
ceutiques (SFSTP) [1], several experimental designs are
available for CSs and validation standards (VSs). For
example, a typical experimental design for calibration
consists of preparing duplicate solutions at N concen-
tration levels and replicating over three days or three
conditions: 3 · N · 2 [8]. VSs are prepared in the matrix
with maybe a different experimental design p · m · n (p
conditions, m levels and n repetitions), as we will con-
sider in Section 2.4. on accuracy study.

To obtain the best adapted calibration function, sev-
eral mathematical models can be tested, involving
mathematical transformations as well as weighted
regression techniques in which the response variance
varies as a function of analyte concentration.

2.3.1. Goodness of fit. Suitable regression analysis of the
analytical signal (Y) on the analyte concentrations (Z)
established in the calibration set yields the calibration
curve for the predicted responses ðbY Þ. The simplest
model is the linear one, very often found in analytical
methodology, leading to predicted responses according
to Equation (4):bY ¼ aþ bZ ð4Þ
where a is the intercept and b the slope, with standard
deviations sa and sb, respectively. However, as we stated
above, non-linear models can be also applied in a
number of analytical techniques, as given in Equation (5):bY ¼ f ðZÞ ð5Þ
f being the non-linear function to be tested.

Equation (4), or (5), must be checked for goodness of
fit. The correlation coefficient, although commonly
used, especially in linear models, is not appropriate
[19], so some more suitable criteria should be consid-
ered. A simple way to diagnose the regression model is
to use residual plots [20–22]. For an adequate model,
the residuals are expected to be normally distributed, so
a plot of them on a normal probability graph may be
useful. Any curvature suggests a lack of fit due to a
non-linear effect. A segmented pattern indicates heter-
oscedasticity in data, so weighted regression should be
used to find the straight line for calibration [23]. In the
latter case, the non-homogeneity of variances can also
be checked by using the Cochran criterion [24], when
the number of observations is the same for all con-
centration levels. Another advantage of using calibra-
tion designs with repetition is the possibility of
estimating a pooled sum of squares due to pure errors,
SSPE. The best way to test the goodness of fit is by
comparing the variance of the lack of fit against the
pure-error variance [22].

The residual sum of squares of the model

SSR ¼
XN

i¼1

ð bY i � YiÞ2 ð6Þ
http://www.elsevier.com/locate/trac 229
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can be decomposed into the sum of squares corre-
sponding to pure error (SSPE) and the sum of squares
corresponding to the lack of fit (SSLOF), hence:

SSLOF ¼ SSR � SSPE

mLOF ¼ mR � mPE

ð7Þ

mPE and mR being the degrees of freedom for estimating
the sum of squares of pure error and residuals, respec-
tively.

The pure-error variance is SSPE/mPE, and the variance
of the lack of fit is SSLOF/mLOF. In order to estimate the
adequacy of the model, the Fisher F-test is applied:

F ¼ ðSSR � SSPEÞ=ðmR � mPEÞ
SSPE=mPE

ð8Þ

The calibration model is considered suitable if F is less
than the one-tailed tabulated value Ftab(mR � mPE,mPE,P)
at a P selected confidence level.

It is possible, from this proof, to devise a connection
with correlation coefficient r by remembering that 1 � r2

accounts for the ratio of the residual sum of squares to
the total sum of squares of the deviation about the mean,
as González et al. pointed out [25].

Always within the realm of linear models, and taking
into account the term ‘‘linearity’’ in the context of lin-
earity of the response function, some authors consider
two features: in-line and on-line linearity [26]. In-line
linearity refers to the linearity of the model assessed by
the goodness of fit (absence of curvature), and on-line
linearity refers to the dispersion of the data around the
calibration line and is based on the relative standard
deviation of the slope, RSDb = sb/b. This value is taken as
another characteristic parameter of performance and
depends on the maximum value accepted for RSDb, so a
typical threshold may be RSDb 6 5%. Once both ‘‘in-
line’’ and ‘‘on-line’’ linearity are assessed, a test for an
intercept significantly different from zero is generally
performed by applying the Student t-test [27].

Once the calibration curve is obtained, an inverse
prediction equation is then built to predict the actual
concentrations of the VSs by considering corrections
terms, if needed, owing to the presence of constant and
proportional bias.

2.3.2. Linear range. The procedure described by Huber
[28] is quite efficient at giving the proper linear dynamic
range of analyte from the calibration data. It consists of
evaluating so-called response factors RFi obtained by
dividing the signal responses by their respective analyte
concentrations. A graph is plotted with the response
factors on the y-axis and the corresponding concentra-
tions on the x-axis. The line obtained should be of near-
zero slope (horizontal) over the concentration range.
This behavior is supported assuming that the model is
230 http://www.elsevier.com/locate/trac
linear and without intercept, bY i ¼ bZi, so RF i ¼ Y i
Zi
’ b.

At high concentrations, negative deviation from linear-
ity is expected. Two parallel horizontal lines are drawn in
the graph at 0.95 and 1.05 times the average value of
the response factors (very close to b, as indicated above)
in a fashion similar to the action limits of control charts.
The linear range of responses corresponds to the analyte
concentrations from the point intersecting the line
y = 1.05b up to the point that intersects the line
y = 0.95b. It is possible that no intersections are found,
and, in this case, the linear range applies to the full
range being studied, if the minimum concentration level
is higher than the limit of detection (LOD) in case of trace
analysis.

In routine analysis, linear ranges are established in
assay methods as 80–120% of the analyte level. For
impurity tests, the lower linearity limit is the limit of
quantitation (LOQ), so the range of linearity begins with
the LOQ and finishes about the 150% of the target level
for the analyte, according to USP/ICH and IUPAC
guidelines [13].

2.3.3. Sensitivity, detection limit and quantitation
limit. Sensitivity is the change in the analytical re-
sponse divided by the corresponding change in analyte
concentration; i.e. at a given value of analyte concen-
tration Z0:

Sensitivity ¼ dY

dZ

� �
Z0

ð9Þ

If the calibration is linear, the sensitivity is just cali-
bration slope b at every value of analyte concentration.
In addition to sensitivity, there are two parameters
reciprocally derived from sensitivity, much more often
used for performance characteristics: the limit of detec-
tion (LOD) and the limit of determination or quantitation
(LOQ).

LOD is the lowest concentration of analyte that can be
detected and reliably distinguished from zero (or the
noise level of the system), but not necessarily quantified;
the concentration at which a measured value is larger
than the uncertainty associated with it. LOD can be
expressed in response units (YLOD) and is taken typically
as three times the noise level for techniques with con-
tinuous recording (e.g., chromatography). Otherwise, it
is commonly estimated by using the expression [29]:

YLOD ¼ Yblank þ 3sblank ð10Þ
where Yblank and sblank are the average value of the blank
signal and its corresponding standard deviation,
respectively, obtained by measuring at least a minimum
of 10 independent sample blanks. Alternatively, when
sample blank cannot produce any response (i.e. vol-
tammetry), 10 independent sample blanks fortified at the
lowest acceptable concentration of the analyte are
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measured and then, YLOD = 3s, s being the standard
deviation of the set of measurements.

Nevertheless, LODs expressed in signal units are awful
to handle. It is more advisable to use LODs in analyte-
concentration units. Thus YLOD values are converted to
ZLOD by using the calibration function:

ZLOD ¼
YLOD � a

b
ð11Þ

Then, the final LOD value, considering zero intercept,
gives:

ZLOD ¼
3sblank

b
ð12Þ

If the errors associated with the calibration line are
taken into account [30], another expression can be
applied [31]:

ZLOD ¼
2tðm;PÞ½s2

blank þ s2
a þ ða=bÞ2s2

b �
1=2

b
ð13Þ

LODs have to be determined only for impurity methods
but not for assay methods.

LOQ is the lowest concentration of analyte that can be
determined quantitatively with an acceptable level of
precision [31]. The procedure for evaluating LOQs is
equivalent to that of LODs, by measuring at least 10
independent sample blanks and using the factor 10
instead of 3 for calculations:

YLOQ ¼ Yblank þ 10sblank ð14Þ
To express LOQ in concentration units, relationships

equivalent to Equations (12) and (13) can be applied
by changing LOD into LOQ. The reason for the factor
10 comes from IUPAC considerations [31], assuming a
relative precision of about 10% in the signal. However,
in order to obtain an LOQ more consistent with the
definition, it is advisable to make a prior estimation of
the RSD of the response against the analyte concen-
tration (near to the unknown LOQ). Thus, a series of
blanks are spiked at several analyte concentrations and
measured in triplicate. For every addition, the %RSD is
calculated. From the plot of %RSD versus the spiked
analyte concentration, the amount that corresponds to
a previously defined precision RSD is interpolated and
taken as the ZLOQ [32]. As indicated above, LOQs are
immaterial for assay methods, but, for impurity tests
and trace analysis, the lower linearity limit is always
the LOQ [13].

2.3.4. Checking proportional and constant bias derived from
matrix effects. As stated above, the use of external cal-
ibration enormously simplifies the protocol because cal-
ibration standards are prepared as simple solutions of the
analyte. However, the effects of possible matrix effects
coming from the sample material must be checked. A
very useful tool for testing constant and proportional
bias due to matrix effects is the standard-addition
method (SAM) and the Youden plot [2,33–35].

Consider the external standard calibration curve, ob-
tained by plotting the signal or analytical response of
different standard solutions of the analyte. Let us assume
that the standard calibration relationship is linear within
a given concentration range of analyte, so the analytical
response follows Equation (4).

Consider now the application of the analytical proce-
dure to a dissolved test portion of a unknown sample
within the linear working range. Assuming that the
sample matrix does not contribute to the signal as an
interfering agent [36] and that there is no interaction
between the analyte and the matrix, the analytical
response can be now modeled as:bY ¼ Aþ BZ ð15Þ
where A and B are sample constants. A is a constant that
does not change when the concentration of the analyte
and/or the sample change [37]. It is called the ‘‘true
sample blank’’ [38] and can be evaluated from the
Youden�s sample plot [39–41]. B is the fundamental
term that justifies the analytical procedure, and it is di-
rectly related to the analytical sensitivity [42]. If both
constant and proportional bias are absent, then A = a
and B = b. In order to assess the absence of proportional
bias, a homogeneous bulk spiked sample from a matrix
that contains the analyte is used. The analyte (here,
surrogate) has to be spiked at several concentration
levels in order to cover the concentration range of the
method scope. Here the SAM can be suitably used to
estimate the recovery of spiked samples [2,33–35], so,
for a spiked sample, Equation (15) may be rewritten as:bY ¼ Aþ BðCnative þ CspikeÞ ¼ Aþ BCnative þ BCspike

¼ aSAM þ bSAMCspike ð16Þ

where Cnative is the concentration of the analyte in the
unspiked sample, Cspike the concentration of the spiked
analyte, and aSAM and bSAM are the intercept and the
slope of the SAM calibration straight line.

From Equation (16), we get:

bSAM ¼ B

aSAM ¼ Aþ bSAMCnative

ð17Þ

If we try to estimate the analyte concentration of a
spiked sample by using the external calibration line
(Equation (4)), we obtain an estimation of the total ob-
served analyte concentration:

bCobs ¼
bY � a

b
¼ ðaSAM � aÞ þ bSAMCspike

b
ð18Þ

For the unspiked sample (Cspike = 0), an estimation of
the native analyte concentration is obtained:bCnative ¼

aSAM � a

b
ð19Þ
http://www.elsevier.com/locate/trac 231



Table 1. Acceptable recovery percentages depending on the
analyte level

Analyte (%%) Analyte
fraction

Unit Recovery
range (%%)

100 1 100% 98–102
10 10�1 10% 98–102
1 10�2 1% 97–103
0.1 10�3 0.1% 95–105
0.01 10�4 100 ppm 90–107
0.001 10�5 10 ppm 80–110
0.0001 10�6 1 ppm 80–110
0.00001 10�7 100 ppb 80–110
0.000001 10�8 10 ppb 60–115
0.0000001 10�9 1 ppb 40–120
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According to Equations (18) and (19), the spiked
concentration of analyte is estimated from the external
calibration as:

bCspike ¼ bCobs � bCnative ¼
bSAM

b
Cspike ð20Þ

The relationship established by Equation (20) is of the
utmost importance because it leads to a measure of the
overall consensus recovery:

R ¼
bCspike

Cspike

¼ bSAM

b
ð21Þ

The absence of proportional bias corresponds to
bSAM = b, or, in terms of recovery, R = 1. This must be
checked for statistical significance [43]:

t ¼ jR� 1j
uðRÞ ð22Þ

with the uncertainty given by:

uðRÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðbSAMÞ

b2 þ b2
SAMu2ðbÞ

b4

s
ð23Þ

According to the LGC/VAM protocol [44], if the
degrees of freedom associated with the uncertainty of
consensus recovery are known, t is compared with the
two-tailed tabulated value, ttab(m,P) for the appropriate
number of degrees of freedom at P% confidence. If
t 6 ttab, the consensus recovery is not significantly dif-
ferent from 1. Alternatively, instead of ttab, coverage
factor k may be used for the comparison. Typical values
are k = 2 or k = 3 for 95% or 99% confidence, respec-
tively [45], so
� if jR�1j

uðRÞ 6 k, the recovery is not significantly different
from 1; and,
� if jR�1j

uðRÞ > k, the recovery is significantly different from 1
and the analytical result must be corrected by R.
Recovery is sometimes considered a separate valida-

tion parameter, but, in any case, it should always be
established as a part of method validation [13]. Apart
from the statistical significance given above, there are
published acceptable recovery percentages as a function
of the analyte concentration [28], as shown in Table 1.

In any case, the relative uncertainty for proportional
bias due to matrix effects, according to the SAM, is taken
as uðRÞ

R .
As mentioned above, in the presence of sample matrix,

the relationship between the analytical response and the
analyte concentration is given by Equation (15). The
independent term ‘‘A’’ is the true sample blank because
it is determined when both the native analyte and the
matrix are present. The SAM calibration, indicated by
Equation (22), includes this term within the intercept
(aSAM = A + bSAMCnative). The Youden�s plot [39–41]
consists of plotting the instrumental response (Y) against
the amount of sample (the weight or volume of sample
test portion to be dissolved up to the assay volume):
232 http://www.elsevier.com/locate/trac
Y ¼ Aþ bYoudenwsample ð24Þ
The intercept of the plot is an estimation of the total

Youden blank (TYB), which is the sum of the system
blank (SB) corresponding to the intercept of the
standard calibration (a) and the Youden blank (YB)
associated with the constant bias in the method
[34,46]. Thus, we can equate TYB = A, SB = a and
YB = A � a. The constant bias in the method is defined
as [34]:

hc ¼
YB

b
¼ A� a

b
ð25Þ

The uncertainty of the constant bias can be obtained
by the law of variance propagation:

uðhcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðAÞ

b2
þ u2ðaÞ

b2
þðA� aÞ2u2ðbÞ

b4
þ2ðA� aÞ

b3
covða;bÞ

s
ð26Þ

The uncertainties, u2(A), u2(a) and u2(b), are obtained
from the statistical parameters of the straight line fits:
s2(A) from the Youden�s plot; and, s2(a) and s2(b) from
the external calibration plot. Also cov(a,b) is computed
from the external calibration straight line.

Once uncertainty u(hc) is evaluated, the constant bias
in the method is tested for significance in a way very
similar to recovery:
� if jhcj

uðhcÞ 6 k, the constant bias is not significantly differ-
ent from 0; and,
� if jhcj

uðhcÞ > k, the constant bias is significantly different
from 0 and the analytical result should be corrected
by hc

As Maroto et al. [47] pointed out, even if the analytical
procedure is free from constant bias, its uncertainty must
be included in the overall uncertainty budget for future
determinations. The same applies to the absence of
proportional bias. Thus, consider Zfound, the analyte
concentration obtained by applying the analytical pro-
cedure to a sample by using the external calibration
function. If, in the matrix-effect study, there are both
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proportional bias (recovery R significantly different from
1) and constant bias (offset hc significantly different from
0), then the corrected estimated concentration value for
the analyte will be:

Z ¼ Zfound � hc

R
ð27Þ

Another way to obtain the corrected concentration
directly is to use the corrected calibration equation for
the measured response Y:

Z ¼ Y � A

bSAM

ð28Þ

The values of A and bSAM are previously established for
every kind of matrix subjected to validation and estab-
lished in the method scope and applicability.

Equation (28) is the inverse prediction equation to be
used for estimating the actual concentrations of VSs.
Note that once it has been demonstrated that both
constant and proportional bias are absent for the
matrices considered for validation, CSs could be taken as
VSs without problem.

2.4. Accuracy study
As stated above, method validation scrutinizes the
accuracy of results by considering both systematic and
random errors. Accuracy is therefore studied as an entity
with two components – trueness and precision – but
considered as a global entity, the uncertainty [48], from
which the bETI will be estimated as well as the accuracy
profiles once the acceptability limits have been estab-
lished.

We are interested in estimating the accuracy profile
from the uncertainty measurement of the analytical
assay from validation data according the LGC/VAM
protocol [44] and the ISO/DTS 21748 guide [49]. The
basic model for the uncertainty of measurand Z is given
by three terms for intra-laboratory measurements:

u2ðZÞ ¼ S2
R þ u2ðdÞ þ u2

robðZÞ ð29Þ
where SR is the intra-laboratory-reproducibility standard
deviation (intermediate precision), u(d) is the uncer-
tainty associated with the bias or trueness of the proce-
dure, and urob is the uncertainty coming from a
robustness exercise.

As both precision and trueness are assessed within a
single laboratory, the uncertainty due to laboratory
transfer should be taken into account. This can be ob-
tained from the robustness study, which considers
changes in the variables of the analytical procedure
(called factors) expected in a transfer between laborato-
ries. According to the International Conference on Har-
monization (ICH Q2A document) [50], the robustness of
an analytical procedure is a measure of its capacity to
remain unaffected by small, but deliberate, variations in
method parameters, and provides an indication of its
reliability during normal usage. Robustness tests can be
considered to be intra-laboratory simulations of inter-
laboratory studies, if the alterations introduced are
suitably selected. Usually, robustness tests that yield
significant effects for the measurand lead to further
optimization of the method, so uncertainty evaluation
should be performed only after the method has been
shown to be robust.

In the case of inter-laboratory validation, the expres-
sion for uncertainty is:

u2ðZÞ ¼ S2
R þ u2ðdÞ ð30Þ

Now SR is the inter-laboratory reproducibility, and
hence it is not needed any robustness study.

Because inter-laboratory measurements can be done
only when inter-laboratory exercises are available, we
will focus on the intra-laboratory estimation of uncer-
tainty.

The estimation of bias and reproducibility is performed
using suitable VSs, prepared in the same matrix as that
expected for future samples. Certified or internal refer-
ence materials represent the best way to obtain a VS, but
spiked samples can be considered as a suitable alterna-
tive [8]. In the case of pharmaceutical formulations (or
other manufactured products) where a ‘‘placebo’’ is
available, the bias or precision study should be carried
out using spiked placebos. But, when a placebo is not
available, selected stable samples fortified to a suitable
level of the analyte may be prepared. VSs must be stable,
homogeneous and as similar as possible to the future
samples to be analyzed, and they represent, in the vali-
dation phase, the future samples that the analytical
procedure will have to quantify. Each VS must be pre-
pared and treated independently as a future sample. This
independence is essential for a good estimation of the
between-series variance. Indeed, the analytical proce-
dure is not developed to quantify routinely with the same
operator and on the same equipment a single sample
unknown on one day but a very large number of
samples through time, thus often implying several
operators and several equipments.

2.4.1. Intermediate precision and trueness studies. Both
intermediate precision and trueness studies can be per-
formed using the prediction of actual concentrations
from the VSs selected for the analytical assay. Following
the golden rules of validation, the analytical procedure
should be validated separately for each kind of matrix
considered, covering the full range of analyte concen-
trations.

Accordingly, a suitable way to perform the inter-
mediate precision study is to consider a single sample
matrix and a range of analyte concentrations. It is
advisable for there to be at least three concentration
levels m (low, medium and high) covering the dynamic
working range, with a number of n replicates at each
http://www.elsevier.com/locate/trac 233



Table 2. Acceptable RSD percentages obtained from the Horwitz
function and from the AOAC Peer Verified Methods (PVM)
program on the analyte level

Analyte (%) Analyte
fraction

Unit Horwitz
%RSD

AOAC PVM
%RSD

100 1 100% 2 1.3
10 10�1 10% 2.8 1.8
1 10�2 1% 4 2.7
0.1 10�3 0.1% 5.7 3.7
0.01 10�4 100 ppm 8 5.3
0.001 10�5 10 ppm 11.3 7.3
0.0001 10�6 1 ppm 16 11
0.00001 10�7 100 ppb 22.6 15
0.000001 10�8 10 ppb 32 21
0.0000001 10�9 1 ppb 45.3 30
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concentration. The ICH Q2B document recommends three
replicates [51] and the FDA document on bioanalytical
validation considers five replications [52], so 3–5 repli-
cations are advisable. Calculations of intermediate preci-
sion must be carried out on results instead of responses.

Considering the different conditions p (here, the days)
chosen as the main source of variation, an analysis of
variance (ANOVA) is then performed for each concen-
tration. Accordingly, for each concentration level, m, we
consider the results of the analysis, according to inverse-
prediction Equation (28), zij with two indices: i (from 1 to
p) corresponding to the different days and j (from 1 to n)
accounting for the repetitions. From the ANOVA, we can
easily obtain [53,54] estimations of within-condition
variance ðS2

W Þ and between-condition variance ðS2
BÞ. The

within-condition, also known as repeatability, variance
ðS2

r Þ is given by:

S2
W ¼ S2

r ¼

Pp

i¼1

Pn
j¼1

ðzij � �ziÞ2

pðn� 1Þ ð31Þ

with

�zi ¼

Pn
j¼1

zij

n
ð32Þ

The between-condition variance is estimated accord-
ing to:

S2
B ¼

Pp

i¼1

ð�zi � ��zÞ2

p� 1
� S2

r

n
ð33Þ

with

��z ¼

Pp

i¼1

Pn
j¼1

zij

pn
ð34Þ

The intra laboratory reproducibility or intermediate
precision can be taken as:

S2
R ¼ S2

r þ S2
B ð35Þ

From these data, the corresponding relative standard
deviations, RSDr and RSDR, are calculated. These values
can be compared with the expected values issued from
the Horwitz equation and the ‘‘Horrat’’ [55,56]. Horwitz
[57] devised an expression to predict the expected value
of the relative standard deviation for inter-laboratory
reproducibility (PRSDR) according to:

PRSDR ¼ 2ð1�0:5 log CÞ ð36Þ
where C is the analyte concentration in decimal fraction
units. The Horwitz value is now widely used as a
benchmark [58] for the performance of analytical
methods via a measure called the ‘‘Horrat’’, which is
defined as the ratio of the actual relative standard devi-
234 http://www.elsevier.com/locate/trac
ation, RSD (either for repeatability or reproducibility),
calculated from the analytical data to the Horwitz value:

Horrat ¼ RSD

PRSDR

ð37Þ

Apart from Horwitz�s parameters, expected values of
RSD according the AOAC Peer Verified Methods program
are also considered [59]. These two approaches, as a
function of the analyte concentration, are presented in
Table 2. Some practical requirements concerned with
inter-laboratory studies are [13]:
� RSDr = 0.5–0.6 times PRSDR

� RSDR = 0.5–2 times PRSDR

For intra-laboratory validations, a quick rule is to di-
vide the interval by 2 [60], leading to:
� RSDr = 0.2–0.3 times PRSDR

� RSDR = 0.2–1 times PRSDR

In the bias calculation, the ��z value is taken as the final
result for Z corresponding to the VS of estimated ‘‘true’’
concentration T, so the average bias for the VS is ob-
tained from the elemental bias dij = zij � T according to:

d ¼ 1

pn

Xp

i¼1

Xn

j¼1

dij ¼
1

pn

Xp

i¼1

Xn

j¼1

zij � T ¼ ��z� T

¼ Z� T ð38Þ

The bias uncertainty can be estimated from the same
ANOVA design, according to ISO/DTD 21748 guide
[49], as:

u2ðdÞ ¼
S2

Rð1� cþ c
n
Þ

p
ð39Þ

with

c ¼ S2
r

S2
R

ð40Þ

Accordingly, the only term we need to estimate to
evaluate u(Z) from Equation (29) is the robustness
uncertainty.
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2.4.2. Robustness study. Robustness [61,62], consid-
ered in the sense of internal validation, deals with the
effect of experimental variables, called factors, inherent
in the analytical procedure (e.g., temperature, mobile-
phase composition, detection wavelength, and pH), on
the analytical result. A robustness study examines the
alteration of these factors, as expected in a transfer be-
tween laboratories, so is of the utmost importance in the
uncertainty budget. In experiments to study the main
effects of factors, screening designs are used. Screening
designs are two-level saturated fractional factorial
designs centered on the nominal analytical conditions
[63]. Plackett and Burmann [64] developed such designs
for studying f factors in N = f + 1 experiments, where N
is any multiple of 4 less than 100 (except for 92) [65].
Plackett-Burmann designs are very useful tools for a
robustness study of analytical procedures. However,
these designs cannot deal with factor interactions, so
they are suitable only when the interactions are negli-
gible or when considering a key set of dominant factors
[25].

The strategy for carrying out a robustness study is
based on a landmark procedure suggested by Youden
[66,67]:
(1) identify the influential factors;
(2) for each factor, define the nominal and the extreme

values expected in routine work and encode them as
follows: nominal value = 0, high value = +1 and
low value = � 1;

(3) arrange the experimental design by using a two-
level 27�4 fractional Plackett-Burmann matrix; and,

(4) perform the experiments in random order on a con-
trol sample with analyte concentration halfway in
the concentration range of the method scope.

According to the definition of robustness, the interval
under investigation is very short (�1, +1; e.g., pH 3.8–
4.2). Under these conditions, it must be stressed that no
quadratic effect is generally observed, so a linear model
can be used. It is one of fundamental differences between
the robustness study and the optimization study, in
which the interval under investigation is wider.

Youden selected a 27�4 Plackett-Burmann design be-
cause it enabled the study of up to seven factors in eight
Table 3. Arrangement of factor levels for a 27�4 Plackett-Burmann design

Runs Factors xk (k = 1 to f)

N X1 X2 X3 X4

1 +1 +1 +1 +1
2 +1 +1 �1 +1
3 +1 �1 +1 �1
4 +1 �1 �1 �1
5 �1 +1 +1 �1
6 �1 +1 �1 �1
7 �1 �1 +1 +1
8 �1 �1 �1 +1
experiments. The corresponding matrix design is illus-
trated in Table 3. The eight runs are split into two
groups of four runs on the basis of levels +1 or �1. The
effect of every factor xk is estimated as the difference of
the mean result obtained at the level +1 from that ob-
tained at the level �1.

DðxkÞ ¼
1

4

XN

i¼1

Zi

 !
ðxk¼þ1Þ

�
XN

i¼1

Zi

 !
ðxk¼�1Þ

0@ 1A ð41Þ

Once effects D(xk) have been estimated, to determine
whether variations have a significant effect on the result,
a significance t-test is used [68]:

tðxkÞ ¼
ffiffiffi
2
p
jDðxkÞj
SR

ð42Þ

The t-value is compared with the 95%-confidence level
two-tailed tabulated value with the degrees of freedom
coming from the precision study for each concentration:
m = pn � 1. If t(xk) 6 ttab, then the procedure is robust
against the factor xk. In this case, the uncertainty on
measurand Z coming from factor xk, u(Z(xk)) is evaluated
from [44]:

uðZðxkÞÞ ¼
tcritSR

1:96
ffiffiffi
2
p drealðxkÞ

dtestðxkÞ
ð43Þ

Here dreal is the change in the factor level that would
be expected when the method is operating routinely, and
dtest is the change in the factor level specified in the
robustness study. Once the contributions of the influ-
ential factors have been estimated, the relative uncer-
tainty of the robustness study is calculated as:

RSDrob ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

u2ðZðxkÞÞ

Z2

vuut
ð44Þ

Z is the average value of the eight results obtained in the
robustness study. By taking this value for any future
concentration, Z, the uncertainty of robustness is urob(Z) =
Z RSDrob. This leads to the final uncertainty budget
according to Equation (29). The expanded uncertainty is
obtained as the product of the standard uncertainty u(Z)
and the coverage factor k selected as the b quantile of the
Response

X5 X6 X7 Zi (i = 1 to N)
+1 +1 +1 Z1

�1 �1 �1 Z2

+1 �1 �1 Z3

�1 +1 +1 Z4

�1 +1 �1 Z5

+1 �1 +1 Z6

�1 �1 +1 Z7

+1 +1 �1 Z8

http://www.elsevier.com/locate/trac 235



Trends Trends in Analytical Chemistry, Vol. 26, No. 3, 2007
Student t distribution, so the final expression for the con-
fidence interval of the analytical result is

Z� kuðZÞ ¼ Z� UðZÞ ð45Þ
2.4.3. Study of accuracy profiles. Considering that the
concentrations of VSs are taken as reference values T,
after analyzing them, the interval for the bias of the
result is given, according to Equation (38), as:

ðZ� UðZÞÞ � T ¼ ðZ� TÞ � UðZÞ ¼ d� UðZÞ ð46Þ
Remembering Equation (39) and condition (2), the

corresponding bETI is constructed as:

jd� UðZÞj < k ð47Þ
When the bETI is evaluated for a number of concen-

tration levels (VSs) covering the whole range of analyte
concentrations specified in the method scope, the accu-
Tm ThTl

y = λ

y = -λ

A

B

Figure 2. Accuracy profile when intersection occurs between med-
ium and low level. LQL = B (B > A) and UQL = Th (no intersections
in this zone).

Tm ThTl

y = λ

y = -λ

A

B

Figure 3. Accuracy profile when two intersections occur, one
between medium and low level and another between medium
and high level. LQL = A and UQL = B.
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racy profile can be constructed, according to González
and Herrador [69]: for each concentration level, the
bETI is calculated from Equation (47). Upper and lower
tolerance-interval limits are then connected by straight
lines to interpolate the behavior of the limits between the
levels studied. The quantification limits are located at the
intersections between the interpolating lines and the
acceptance limits. If we deal with three levels – low (Tl),
medium (Tm) and high (Th) – three bETIs are computed

and expressed as percentage values – 100 dl�UðZlÞ
Zl

;

100 dm�UðZmÞ
Zm

and 100 dh�UðZhÞ
Zh

. The points corresponding

to the upper limits have coordinates ðT l;100 dlþUðZlÞ
Zl
Þ;

ðT m;100 dmþUðZmÞ
Zm
Þ and ðT h;100 dhþUðZhÞ

Zh
Þ, and they are

connected by linear segments. The same procedure is

done for the lower limits ðT l;100 dl�UðZlÞ
Zl
Þ;

ðT m;100 dm�UðZmÞ
Zm
Þ and ðT h;100 dh�UðZhÞ

Zh
Þ. The intersec-

tions between these two segmented lines with the
Tm ThTl

y = λ

y = -λ

A

B C

D

Figure 4. Accuracy profile when several intersections take place.
LQL = B (B > A) and UQL = C (C < D).

Tm ThTl

y = 

y = 

λ

λ

Figure 5. Accuracy profile when no intersections occur in the
working range of concentration.
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acceptance-limit straight lines y = k and y = � k (in %)
give the aforementioned quantification limits. Some
typical patterns are shown in Figs. 2–5. The domain of
valid concentrations for future assays corresponds to the
quantification limits LQL (lower) and UQL (upper) that
can be extracted from accuracy profiles.
3. Summary

In this article, we have presented in detail a holistic
approach to validate analytical methods including
uncertainty measurement and accuracy profiles.

In a first step, we outlined the scope of an analytical
method, considering its applicability, fitness for purpose
and the given acceptability limits, paying special atten-
tion to the concept of acceptability limit that enables us
to estimate the bETI interval and the accuracy profiles.

We briefly considered features of specificity and
selectivity because modern analytical methods used for
routine analysis are selected just because of selectivity
issues.

We considered calibration study as a separate stage
because of its importance in method validation. At this
stage, we also considered goodness of the fit of the cali-
bration function, together with the linearity assessment,
linear range, LOD and LOQ. Moreover, checking for
matrix effects taking into account possible constant and
proportional bias are carried out at this stage in order to
correct the calibration function suitably for direct
application to routine analysis of samples.

We outlined accuracy study from a contemporary,
holistic perspective [70], covering the study of precision,
trueness and robustness and the estimation of mea-
surement uncertainty as well as the derivation of bETI
intervals and accuracy profiles.
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